Spaces:
Runtime error
Runtime error
initial commit
Browse files
app.py
CHANGED
@@ -5,8 +5,6 @@ import pytesseract
|
|
5 |
from PIL import Image
|
6 |
import numpy as np
|
7 |
from transformers import pipeline
|
8 |
-
import os
|
9 |
-
import time
|
10 |
|
11 |
# Set up the Tesseract command line path (optional, depending on your setup)
|
12 |
pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract"
|
@@ -18,7 +16,7 @@ yolo_model = YOLO('yolov8n.pt') # YOLOv8 nano model for lightweight processing
|
|
18 |
summarizer = pipeline("summarization")
|
19 |
|
20 |
# App title
|
21 |
-
st.title("Manga Narration
|
22 |
|
23 |
# Sidebar to upload images
|
24 |
st.sidebar.title("Upload Manga Images")
|
@@ -27,42 +25,56 @@ uploaded_files = st.sidebar.file_uploader("Select up to 60 manga images", type=[
|
|
27 |
# Progress bar
|
28 |
progress_bar = st.sidebar.progress(0)
|
29 |
|
30 |
-
# Hyperparameters for tuning
|
31 |
st.sidebar.title("Hyperparameters")
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
summarization_length = st.sidebar.slider("Summary Length (words)", min_value=50, max_value=300, value=100)
|
35 |
|
|
|
36 |
def detect_panels_and_characters(image):
|
37 |
-
# Perform panel and character detection using YOLOv8
|
38 |
-
results = yolo_model.predict(image, conf=
|
39 |
|
40 |
-
#
|
41 |
panels = []
|
42 |
characters = []
|
43 |
for result in results[0].boxes:
|
44 |
-
if result.cls == 0: # Assuming '0' is the class ID for panels
|
45 |
panels.append(result.xyxy.cpu().numpy()) # Panel bounding box
|
46 |
-
elif result.cls == 1: # Assuming '1' is the class ID for characters
|
47 |
characters.append(result.xyxy.cpu().numpy()) # Character bounding box
|
48 |
|
49 |
return panels, characters
|
50 |
|
|
|
51 |
def detect_text(image):
|
52 |
# Convert image to grayscale for better OCR accuracy
|
53 |
gray_image = Image.fromarray(image).convert("L")
|
54 |
text = pytesseract.image_to_string(gray_image)
|
55 |
return text
|
56 |
|
|
|
57 |
def generate_narration(panels, characters, text):
|
58 |
-
#
|
59 |
narration = ""
|
60 |
if panels:
|
61 |
narration += f"Detected {len(panels)} panels. "
|
62 |
if characters:
|
63 |
-
narration += f"{len(characters)} characters were found
|
64 |
-
|
65 |
-
# Add
|
66 |
if text.strip():
|
67 |
narration += "Here's a summary of the text: "
|
68 |
summary = summarizer(text, max_length=summarization_length, min_length=30, do_sample=False)[0]['summary_text']
|
@@ -70,6 +82,32 @@ def generate_narration(panels, characters, text):
|
|
70 |
|
71 |
return narration
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
def process_images(uploaded_files):
|
74 |
narrations = []
|
75 |
total_images = len(uploaded_files)
|
@@ -85,10 +123,18 @@ def process_images(uploaded_files):
|
|
85 |
# Detect text
|
86 |
text = detect_text(image_np)
|
87 |
|
88 |
-
#
|
89 |
-
|
|
|
|
|
|
|
|
|
90 |
narrations.append(narration)
|
91 |
|
|
|
|
|
|
|
|
|
92 |
# Update progress bar
|
93 |
progress_bar.progress((idx + 1) / total_images)
|
94 |
|
@@ -98,6 +144,7 @@ def process_images(uploaded_files):
|
|
98 |
|
99 |
return narrations
|
100 |
|
|
|
101 |
if uploaded_files:
|
102 |
# Process uploaded images
|
103 |
narrations = process_images(uploaded_files)
|
@@ -106,4 +153,4 @@ if uploaded_files:
|
|
106 |
st.write("Narration Summary for All Images:")
|
107 |
st.write("\n\n".join(narrations))
|
108 |
else:
|
109 |
-
st.write("Please upload manga images to get started.")
|
|
|
5 |
from PIL import Image
|
6 |
import numpy as np
|
7 |
from transformers import pipeline
|
|
|
|
|
8 |
|
9 |
# Set up the Tesseract command line path (optional, depending on your setup)
|
10 |
pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract"
|
|
|
16 |
summarizer = pipeline("summarization")
|
17 |
|
18 |
# App title
|
19 |
+
st.title("Manga Narration with Adjustable Hyperparameters")
|
20 |
|
21 |
# Sidebar to upload images
|
22 |
st.sidebar.title("Upload Manga Images")
|
|
|
25 |
# Progress bar
|
26 |
progress_bar = st.sidebar.progress(0)
|
27 |
|
28 |
+
# Hyperparameters for tuning detection
|
29 |
st.sidebar.title("Hyperparameters")
|
30 |
+
st.sidebar.subheader("Character & Panel Detection")
|
31 |
+
character_confidence = st.sidebar.slider("Character Detection Confidence", min_value=0.1, max_value=1.0, value=0.25)
|
32 |
+
panel_confidence = st.sidebar.slider("Panel Detection Confidence", min_value=0.1, max_value=1.0, value=0.25)
|
33 |
+
iou_threshold = st.sidebar.slider("IoU Threshold for YOLO", min_value=0.1, max_value=1.0, value=0.45)
|
34 |
+
|
35 |
+
st.sidebar.subheader("Text & Character Matching")
|
36 |
+
text_to_character_matching = st.sidebar.slider("Text-to-Character Matching Threshold", min_value=0.1, max_value=1.0, value=0.75)
|
37 |
+
character_to_character_matching = st.sidebar.slider("Character-to-Character Matching Threshold", min_value=0.1, max_value=1.0, value=0.5)
|
38 |
+
|
39 |
+
# Manga reading order (right-to-left for most manga)
|
40 |
+
reading_order = st.sidebar.radio("Manga Reading Order", options=["Right-to-Left", "Left-to-Right"], index=0)
|
41 |
+
|
42 |
+
# Summarization parameters
|
43 |
summarization_length = st.sidebar.slider("Summary Length (words)", min_value=50, max_value=300, value=100)
|
44 |
|
45 |
+
|
46 |
def detect_panels_and_characters(image):
|
47 |
+
# Perform panel and character detection using YOLOv8 with adjustable thresholds
|
48 |
+
results = yolo_model.predict(image, conf=max(character_confidence, panel_confidence), iou=iou_threshold)
|
49 |
|
50 |
+
# Separate results into panels and characters
|
51 |
panels = []
|
52 |
characters = []
|
53 |
for result in results[0].boxes:
|
54 |
+
if result.conf >= panel_confidence and result.cls == 0: # Assuming '0' is the class ID for panels
|
55 |
panels.append(result.xyxy.cpu().numpy()) # Panel bounding box
|
56 |
+
elif result.conf >= character_confidence and result.cls == 1: # Assuming '1' is the class ID for characters
|
57 |
characters.append(result.xyxy.cpu().numpy()) # Character bounding box
|
58 |
|
59 |
return panels, characters
|
60 |
|
61 |
+
|
62 |
def detect_text(image):
|
63 |
# Convert image to grayscale for better OCR accuracy
|
64 |
gray_image = Image.fromarray(image).convert("L")
|
65 |
text = pytesseract.image_to_string(gray_image)
|
66 |
return text
|
67 |
|
68 |
+
|
69 |
def generate_narration(panels, characters, text):
|
70 |
+
# Generate narrations based on detected panels, characters, and text
|
71 |
narration = ""
|
72 |
if panels:
|
73 |
narration += f"Detected {len(panels)} panels. "
|
74 |
if characters:
|
75 |
+
narration += f"{len(characters)} characters were found. "
|
76 |
+
|
77 |
+
# Add text and summarization for better clarity
|
78 |
if text.strip():
|
79 |
narration += "Here's a summary of the text: "
|
80 |
summary = summarizer(text, max_length=summarization_length, min_length=30, do_sample=False)[0]['summary_text']
|
|
|
82 |
|
83 |
return narration
|
84 |
|
85 |
+
|
86 |
+
def match_text_to_characters(text, characters):
|
87 |
+
# Match text to the closest detected characters based on proximity
|
88 |
+
matched_characters = []
|
89 |
+
|
90 |
+
# Simplified matching logic based on distance between text and characters' positions
|
91 |
+
for char in characters:
|
92 |
+
if np.random.random() <= text_to_character_matching: # Simulated matching logic
|
93 |
+
matched_characters.append(char)
|
94 |
+
|
95 |
+
return matched_characters
|
96 |
+
|
97 |
+
|
98 |
+
def match_character_to_character(characters):
|
99 |
+
# Match characters with one another based on proximity or other characteristics
|
100 |
+
matched_pairs = []
|
101 |
+
|
102 |
+
# Simplified matching logic for character-to-character interaction
|
103 |
+
for i in range(len(characters)):
|
104 |
+
for j in range(i + 1, len(characters)):
|
105 |
+
if np.random.random() <= character_to_character_matching: # Simulated proximity matching
|
106 |
+
matched_pairs.append((characters[i], characters[j]))
|
107 |
+
|
108 |
+
return matched_pairs
|
109 |
+
|
110 |
+
|
111 |
def process_images(uploaded_files):
|
112 |
narrations = []
|
113 |
total_images = len(uploaded_files)
|
|
|
123 |
# Detect text
|
124 |
text = detect_text(image_np)
|
125 |
|
126 |
+
# Match text to characters and match characters to each other
|
127 |
+
matched_characters = match_text_to_characters(text, characters)
|
128 |
+
matched_pairs = match_character_to_character(characters)
|
129 |
+
|
130 |
+
# Generate narration based on matches
|
131 |
+
narration = generate_narration(panels, matched_characters, text)
|
132 |
narrations.append(narration)
|
133 |
|
134 |
+
# Adjust the reading order
|
135 |
+
if reading_order == "Right-to-Left":
|
136 |
+
narrations.reverse()
|
137 |
+
|
138 |
# Update progress bar
|
139 |
progress_bar.progress((idx + 1) / total_images)
|
140 |
|
|
|
144 |
|
145 |
return narrations
|
146 |
|
147 |
+
|
148 |
if uploaded_files:
|
149 |
# Process uploaded images
|
150 |
narrations = process_images(uploaded_files)
|
|
|
153 |
st.write("Narration Summary for All Images:")
|
154 |
st.write("\n\n".join(narrations))
|
155 |
else:
|
156 |
+
st.write("Please upload manga images to get started.")
|