Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,9 +4,7 @@ from PIL import Image
|
|
4 |
import torch
|
5 |
import numpy as np
|
6 |
import urllib.request
|
7 |
-
import subprocess
|
8 |
|
9 |
-
# Load model
|
10 |
@st.cache_resource
|
11 |
def load_model():
|
12 |
model = AutoModel.from_pretrained("ragavsachdeva/magi", trust_remote_code=True)
|
@@ -14,7 +12,6 @@ def load_model():
|
|
14 |
model.to(device)
|
15 |
return model
|
16 |
|
17 |
-
# Read image as numpy array
|
18 |
@st.cache_data
|
19 |
def read_image_as_np_array(image_path):
|
20 |
if "http" in image_path:
|
@@ -24,7 +21,6 @@ def read_image_as_np_array(image_path):
|
|
24 |
image = np.array(image)
|
25 |
return image
|
26 |
|
27 |
-
# Predict detections and associations
|
28 |
@st.cache_data
|
29 |
def predict_detections_and_associations(
|
30 |
image_path,
|
@@ -46,7 +42,6 @@ def predict_detections_and_associations(
|
|
46 |
)[0]
|
47 |
return result
|
48 |
|
49 |
-
# OCR prediction for transcript
|
50 |
@st.cache_data
|
51 |
def predict_ocr(
|
52 |
image_path,
|
@@ -56,9 +51,11 @@ def predict_ocr(
|
|
56 |
character_character_matching_threshold,
|
57 |
text_character_matching_threshold,
|
58 |
):
|
|
|
|
|
59 |
image = read_image_as_np_array(image_path)
|
60 |
result = predict_detections_and_associations(
|
61 |
-
|
62 |
character_detection_threshold,
|
63 |
panel_detection_threshold,
|
64 |
text_detection_threshold,
|
@@ -70,76 +67,59 @@ def predict_ocr(
|
|
70 |
ocr_results = model.predict_ocr([image], text_bboxes_for_all_images)
|
71 |
return ocr_results
|
72 |
|
73 |
-
# Terminal command function
|
74 |
-
def run_command(command):
|
75 |
-
try:
|
76 |
-
result = subprocess.run(command, shell=True, text=True, capture_output=True)
|
77 |
-
output = result.stdout + result.stderr
|
78 |
-
return output
|
79 |
-
except Exception as e:
|
80 |
-
return str(e)
|
81 |
-
|
82 |
-
# Load the model
|
83 |
model = load_model()
|
84 |
|
85 |
-
#
|
86 |
-
st.markdown("""<style>
|
87 |
-
.title-container { background-color: #0d1117; padding: 20px; border-radius: 10px; margin: 20px; }
|
88 |
-
.title { font-size: 2em; text-align: center; color: #fff; font-family: 'Comic Sans MS', cursive; text-transform: uppercase; letter-spacing: 0.1em; padding: 0.5em 0 0.2em; background: 0 0; }
|
89 |
-
.title span { background: -webkit-linear-gradient(45deg, #6495ed, #4169e1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; }
|
90 |
-
.subheading { font-size: 1.5em; text-align: center; color: #ddd; font-family: 'Comic Sans MS', cursive; }
|
91 |
-
</style>""", unsafe_allow_html=True)
|
92 |
-
|
93 |
-
st.title("Manga Narrator and Terminal App")
|
94 |
-
|
95 |
-
# File uploader for image
|
96 |
path_to_image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
|
97 |
|
98 |
-
|
|
|
|
|
99 |
st.sidebar.markdown("**Hyperparameters**")
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
105 |
|
106 |
-
# Generate Narration button
|
107 |
if path_to_image is not None:
|
108 |
-
|
109 |
|
110 |
-
|
111 |
-
if
|
112 |
-
# Generate detections and associations
|
113 |
result = predict_detections_and_associations(
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
ocr_results = predict_ocr(
|
124 |
path_to_image,
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
)
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
output =
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
4 |
import torch
|
5 |
import numpy as np
|
6 |
import urllib.request
|
|
|
7 |
|
|
|
8 |
@st.cache_resource
|
9 |
def load_model():
|
10 |
model = AutoModel.from_pretrained("ragavsachdeva/magi", trust_remote_code=True)
|
|
|
12 |
model.to(device)
|
13 |
return model
|
14 |
|
|
|
15 |
@st.cache_data
|
16 |
def read_image_as_np_array(image_path):
|
17 |
if "http" in image_path:
|
|
|
21 |
image = np.array(image)
|
22 |
return image
|
23 |
|
|
|
24 |
@st.cache_data
|
25 |
def predict_detections_and_associations(
|
26 |
image_path,
|
|
|
42 |
)[0]
|
43 |
return result
|
44 |
|
|
|
45 |
@st.cache_data
|
46 |
def predict_ocr(
|
47 |
image_path,
|
|
|
51 |
character_character_matching_threshold,
|
52 |
text_character_matching_threshold,
|
53 |
):
|
54 |
+
if not generate_transcript:
|
55 |
+
return
|
56 |
image = read_image_as_np_array(image_path)
|
57 |
result = predict_detections_and_associations(
|
58 |
+
path_to_image,
|
59 |
character_detection_threshold,
|
60 |
panel_detection_threshold,
|
61 |
text_detection_threshold,
|
|
|
67 |
ocr_results = model.predict_ocr([image], text_bboxes_for_all_images)
|
68 |
return ocr_results
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
model = load_model()
|
71 |
|
72 |
+
st.markdown(""" <style> .title-container { background-color: #0d1117; padding: 20px; border-radius: 10px; margin: 20px; } .title { font-size: 2em; text-align: center; color: #fff; font-family: 'Comic Sans MS', cursive; text-transform: uppercase; letter-spacing: 0.1em; padding: 0.5em 0 0.2em; background: 0 0; } .title span { background: -webkit-linear-gradient(45deg, #6495ed, #4169e1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; } .subheading { font-size: 1.5em; text-align: center; color: #ddd; font-family: 'Comic Sans MS', cursive; } .affil, .authors { font-size: 1em; text-align: center; color: #ddd; font-family: 'Comic Sans MS', cursive; } .authors { padding-top: 1em; } </style> <div class='title-container'> <div class='title'> The <span>Ma</span>n<span>g</span>a Wh<span>i</span>sperer </div> <div class='subheading'> Automatically Generating Transcriptions for Comics </div> <div class='authors'> Ragav Sachdeva and Andrew Zisserman </div> <div class='affil'> University of Oxford </div> </div>""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
path_to_image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
|
74 |
|
75 |
+
st.sidebar.markdown("**Mode**")
|
76 |
+
generate_detections_and_associations = st.sidebar.toggle("Generate detections and associations", True)
|
77 |
+
generate_transcript = st.sidebar.toggle("Generate transcript (slower)", False)
|
78 |
st.sidebar.markdown("**Hyperparameters**")
|
79 |
+
input_character_detection_threshold = st.sidebar.slider('Character detection threshold', 0.0, 1.0, 0.30, step=0.01)
|
80 |
+
input_panel_detection_threshold = st.sidebar.slider('Panel detection threshold', 0.0, 1.0, 0.2, step=0.01)
|
81 |
+
input_text_detection_threshold = st.sidebar.slider('Text detection threshold', 0.0, 1.0, 0.25, step=0.01)
|
82 |
+
input_character_character_matching_threshold = st.sidebar.slider('Character-character matching threshold', 0.0, 1.0, 0.7, step=0.01)
|
83 |
+
input_text_character_matching_threshold = st.sidebar.slider('Text-character matching threshold', 0.0, 1.0, 0.4, step=0.01)
|
84 |
+
|
85 |
|
|
|
86 |
if path_to_image is not None:
|
87 |
+
image = read_image_as_np_array(path_to_image)
|
88 |
|
89 |
+
st.markdown("**Prediction**")
|
90 |
+
if generate_detections_and_associations or generate_transcript:
|
|
|
91 |
result = predict_detections_and_associations(
|
92 |
+
path_to_image,
|
93 |
+
input_character_detection_threshold,
|
94 |
+
input_panel_detection_threshold,
|
95 |
+
input_text_detection_threshold,
|
96 |
+
input_character_character_matching_threshold,
|
97 |
+
input_text_character_matching_threshold,
|
98 |
+
)
|
99 |
+
|
100 |
+
if generate_transcript:
|
101 |
ocr_results = predict_ocr(
|
102 |
path_to_image,
|
103 |
+
input_character_detection_threshold,
|
104 |
+
input_panel_detection_threshold,
|
105 |
+
input_text_detection_threshold,
|
106 |
+
input_character_character_matching_threshold,
|
107 |
+
input_text_character_matching_threshold,
|
108 |
)
|
109 |
+
|
110 |
+
if generate_detections_and_associations and generate_transcript:
|
111 |
+
col1, col2 = st.columns(2)
|
112 |
+
output = model.visualise_single_image_prediction(image, result)
|
113 |
+
col1.image(output)
|
114 |
+
text_bboxes_for_all_images = [result["texts"]]
|
115 |
+
ocr_results = model.predict_ocr([image], text_bboxes_for_all_images)
|
116 |
+
transcript = model.generate_transcript_for_single_image(result, ocr_results[0])
|
117 |
+
col2.text(transcript)
|
118 |
+
|
119 |
+
elif generate_detections_and_associations:
|
120 |
+
output = model.visualise_single_image_prediction(image, result)
|
121 |
+
st.image(output)
|
122 |
+
|
123 |
+
elif generate_transcript:
|
124 |
+
transcript = model.generate_transcript_for_single_image(result, ocr_results[0])
|
125 |
+
st.text(transcript)
|