Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,15 +5,15 @@ import torch
|
|
5 |
import numpy as np
|
6 |
import urllib.request
|
7 |
|
8 |
-
# Load model without caching
|
9 |
def load_model():
|
10 |
model = AutoModel.from_pretrained("ragavsachdeva/magi", trust_remote_code=True)
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
model.to(device)
|
13 |
return model
|
14 |
|
15 |
-
#
|
16 |
-
model = load_model()
|
17 |
|
18 |
@st.cache_data
|
19 |
def read_image_as_np_array(image_path):
|
@@ -45,7 +45,6 @@ def predict_detections_and_associations(
|
|
45 |
)[0]
|
46 |
return result
|
47 |
|
48 |
-
|
49 |
@st.cache_data
|
50 |
def predict_ocr(
|
51 |
image_path,
|
@@ -59,7 +58,7 @@ def predict_ocr(
|
|
59 |
return
|
60 |
image = read_image_as_np_array(image_path)
|
61 |
result = predict_detections_and_associations(
|
62 |
-
|
63 |
character_detection_threshold,
|
64 |
panel_detection_threshold,
|
65 |
text_detection_threshold,
|
@@ -71,23 +70,25 @@ def predict_ocr(
|
|
71 |
ocr_results = model.predict_ocr([image], text_bboxes_for_all_images)
|
72 |
return ocr_results
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
model = load_model()
|
79 |
-
|
80 |
-
# Display header and UI components
|
81 |
-
st.markdown(""" <style> ... styles here ... </style> """, unsafe_allow_html=True)
|
82 |
path_to_image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
|
83 |
|
84 |
-
# Memory control button
|
85 |
-
st.button("Clear Memory", on_click=clear_memory)
|
86 |
-
|
87 |
st.sidebar.markdown("**Mode**")
|
88 |
-
generate_detections_and_associations = st.sidebar.
|
89 |
-
generate_transcript = st.sidebar.
|
90 |
|
|
|
91 |
st.sidebar.markdown("**Hyperparameters**")
|
92 |
input_character_detection_threshold = st.sidebar.slider('Character detection threshold', 0.0, 1.0, 0.30, step=0.01)
|
93 |
input_panel_detection_threshold = st.sidebar.slider('Panel detection threshold', 0.0, 1.0, 0.2, step=0.01)
|
@@ -95,11 +96,13 @@ input_text_detection_threshold = st.sidebar.slider('Text detection threshold', 0
|
|
95 |
input_character_character_matching_threshold = st.sidebar.slider('Character-character matching threshold', 0.0, 1.0, 0.7, step=0.01)
|
96 |
input_text_character_matching_threshold = st.sidebar.slider('Text-character matching threshold', 0.0, 1.0, 0.4, step=0.01)
|
97 |
|
|
|
98 |
if path_to_image is not None:
|
99 |
image = read_image_as_np_array(path_to_image)
|
100 |
st.markdown("**Prediction**")
|
101 |
-
|
102 |
-
|
|
|
103 |
result = predict_detections_and_associations(
|
104 |
path_to_image,
|
105 |
input_character_detection_threshold,
|
@@ -108,6 +111,8 @@ if path_to_image is not None:
|
|
108 |
input_character_character_matching_threshold,
|
109 |
input_text_character_matching_threshold,
|
110 |
)
|
|
|
|
|
111 |
|
112 |
if generate_transcript:
|
113 |
ocr_results = predict_ocr(
|
@@ -118,26 +123,5 @@ if path_to_image is not None:
|
|
118 |
input_character_character_matching_threshold,
|
119 |
input_text_character_matching_threshold,
|
120 |
)
|
121 |
-
|
122 |
-
# Append new characters and transcript to memory
|
123 |
-
if generate_detections_and_associations:
|
124 |
-
output = model.visualise_single_image_prediction(image, result)
|
125 |
-
st.image(output)
|
126 |
-
# Update character memory based on detected characters
|
127 |
-
detected_characters = result.get("characters", {})
|
128 |
-
st.session_state.memory["characters"].update(detected_characters)
|
129 |
-
|
130 |
-
# Append the current transcript to the ongoing transcript in memory
|
131 |
transcript = model.generate_transcript_for_single_image(result, ocr_results[0])
|
132 |
-
st.
|
133 |
-
|
134 |
-
# Display the cumulative transcript from memory
|
135 |
-
st.text(st.session_state.memory["transcript"])
|
136 |
-
|
137 |
-
elif generate_detections_and_associations:
|
138 |
-
output = model.visualise_single_image_prediction(image, result)
|
139 |
-
st.image(output)
|
140 |
-
|
141 |
-
elif generate_transcript:
|
142 |
-
# Display the cumulative transcript
|
143 |
-
st.text(st.session_state.memory["transcript"])
|
|
|
5 |
import numpy as np
|
6 |
import urllib.request
|
7 |
|
8 |
+
# Load the model without caching to avoid serialization issues
|
9 |
def load_model():
|
10 |
model = AutoModel.from_pretrained("ragavsachdeva/magi", trust_remote_code=True)
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
model.to(device)
|
13 |
return model
|
14 |
|
15 |
+
# Initialize the model once at the top level, outside any caching functions
|
16 |
+
model = load_model()
|
17 |
|
18 |
@st.cache_data
|
19 |
def read_image_as_np_array(image_path):
|
|
|
45 |
)[0]
|
46 |
return result
|
47 |
|
|
|
48 |
@st.cache_data
|
49 |
def predict_ocr(
|
50 |
image_path,
|
|
|
58 |
return
|
59 |
image = read_image_as_np_array(image_path)
|
60 |
result = predict_detections_and_associations(
|
61 |
+
path_to_image,
|
62 |
character_detection_threshold,
|
63 |
panel_detection_threshold,
|
64 |
text_detection_threshold,
|
|
|
70 |
ocr_results = model.predict_ocr([image], text_bboxes_for_all_images)
|
71 |
return ocr_results
|
72 |
|
73 |
+
# Streamlit UI elements
|
74 |
+
st.markdown("""
|
75 |
+
<style> .title-container { background-color: #0d1117; padding: 20px; border-radius: 10px; margin: 20px; }
|
76 |
+
.title { font-size: 2em; text-align: center; color: #fff; font-family: 'Comic Sans MS', cursive; text-transform: uppercase;
|
77 |
+
letter-spacing: 0.1em; padding: 0.5em 0 0.2em; background: 0 0; } .title span { background: -webkit-linear-gradient(45deg,
|
78 |
+
#6495ed, #4169e1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; } .subheading { font-size: 1.5em;
|
79 |
+
text-align: center; color: #ddd; font-family: 'Comic Sans MS', cursive; } .affil, .authors { font-size: 1em; text-align: center;
|
80 |
+
color: #ddd; font-family: 'Comic Sans MS', cursive; } .authors { padding-top: 1em; } </style>
|
81 |
+
<div class='title-container'> <div class='title'> The <span>Ma</span>n<span>g</span>a Wh<span>i</span>sperer </div>
|
82 |
+
<div class='subheading'> Automatically Generating Transcriptions for Comics </div> <div class='authors'> Ragav Sachdeva and
|
83 |
+
Andrew Zisserman </div> <div class='affil'> University of Oxford </div> </div>""", unsafe_allow_html=True)
|
84 |
|
|
|
|
|
|
|
|
|
85 |
path_to_image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
|
86 |
|
|
|
|
|
|
|
87 |
st.sidebar.markdown("**Mode**")
|
88 |
+
generate_detections_and_associations = st.sidebar.checkbox("Generate detections and associations", True)
|
89 |
+
generate_transcript = st.sidebar.checkbox("Generate transcript (slower)", False)
|
90 |
|
91 |
+
# Hyperparameter Sliders
|
92 |
st.sidebar.markdown("**Hyperparameters**")
|
93 |
input_character_detection_threshold = st.sidebar.slider('Character detection threshold', 0.0, 1.0, 0.30, step=0.01)
|
94 |
input_panel_detection_threshold = st.sidebar.slider('Panel detection threshold', 0.0, 1.0, 0.2, step=0.01)
|
|
|
96 |
input_character_character_matching_threshold = st.sidebar.slider('Character-character matching threshold', 0.0, 1.0, 0.7, step=0.01)
|
97 |
input_text_character_matching_threshold = st.sidebar.slider('Text-character matching threshold', 0.0, 1.0, 0.4, step=0.01)
|
98 |
|
99 |
+
# Main processing based on image input
|
100 |
if path_to_image is not None:
|
101 |
image = read_image_as_np_array(path_to_image)
|
102 |
st.markdown("**Prediction**")
|
103 |
+
|
104 |
+
# Run predictions based on checkbox selections
|
105 |
+
if generate_detections_and_associations:
|
106 |
result = predict_detections_and_associations(
|
107 |
path_to_image,
|
108 |
input_character_detection_threshold,
|
|
|
111 |
input_character_character_matching_threshold,
|
112 |
input_text_character_matching_threshold,
|
113 |
)
|
114 |
+
output = model.visualise_single_image_prediction(image, result)
|
115 |
+
st.image(output)
|
116 |
|
117 |
if generate_transcript:
|
118 |
ocr_results = predict_ocr(
|
|
|
123 |
input_character_character_matching_threshold,
|
124 |
input_text_character_matching_threshold,
|
125 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
transcript = model.generate_transcript_for_single_image(result, ocr_results[0])
|
127 |
+
st.text(transcript)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|