import streamlit as st from transformers import AutoModel from PIL import Image import torch import numpy as np import urllib.request # Load the model without caching to avoid serialization issues def load_model(): model = AutoModel.from_pretrained("ragavsachdeva/magi", trust_remote_code=True) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) return model # Initialize the model once at the top level, outside any caching functions model = load_model() @st.cache_data def read_image_as_np_array(image_path): if "http" in image_path: image = Image.open(urllib.request.urlopen(image_path)).convert("L").convert("RGB") else: image = Image.open(image_path).convert("L").convert("RGB") image = np.array(image) return image @st.cache_data def predict_detections_and_associations( image_path, character_detection_threshold, panel_detection_threshold, text_detection_threshold, character_character_matching_threshold, text_character_matching_threshold, ): image = read_image_as_np_array(image_path) with torch.no_grad(): result = model.predict_detections_and_associations( [image], character_detection_threshold=character_detection_threshold, panel_detection_threshold=panel_detection_threshold, text_detection_threshold=text_detection_threshold, character_character_matching_threshold=character_character_matching_threshold, text_character_matching_threshold=text_character_matching_threshold, )[0] return result @st.cache_data def predict_ocr( image_path, character_detection_threshold, panel_detection_threshold, text_detection_threshold, character_character_matching_threshold, text_character_matching_threshold, ): if not generate_transcript: return image = read_image_as_np_array(image_path) result = predict_detections_and_associations( path_to_image, character_detection_threshold, panel_detection_threshold, text_detection_threshold, character_character_matching_threshold, text_character_matching_threshold, ) text_bboxes_for_all_images = [result["texts"]] with torch.no_grad(): ocr_results = model.predict_ocr([image], text_bboxes_for_all_images) return ocr_results # Streamlit UI elements st.markdown("""
The Manga Whisperer
Automatically Generating Transcriptions for Comics
Ragav Sachdeva and Andrew Zisserman
University of Oxford
""", unsafe_allow_html=True) path_to_image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"]) st.sidebar.markdown("**Mode**") generate_detections_and_associations = st.sidebar.checkbox("Generate detections and associations", True) generate_transcript = st.sidebar.checkbox("Generate transcript (slower)", False) # Hyperparameter Sliders st.sidebar.markdown("**Hyperparameters**") input_character_detection_threshold = st.sidebar.slider('Character detection threshold', 0.0, 1.0, 0.30, step=0.01) input_panel_detection_threshold = st.sidebar.slider('Panel detection threshold', 0.0, 1.0, 0.2, step=0.01) input_text_detection_threshold = st.sidebar.slider('Text detection threshold', 0.0, 1.0, 0.25, step=0.01) input_character_character_matching_threshold = st.sidebar.slider('Character-character matching threshold', 0.0, 1.0, 0.7, step=0.01) input_text_character_matching_threshold = st.sidebar.slider('Text-character matching threshold', 0.0, 1.0, 0.4, step=0.01) # Main processing based on image input if path_to_image is not None: image = read_image_as_np_array(path_to_image) st.markdown("**Prediction**") # Run predictions based on checkbox selections if generate_detections_and_associations: result = predict_detections_and_associations( path_to_image, input_character_detection_threshold, input_panel_detection_threshold, input_text_detection_threshold, input_character_character_matching_threshold, input_text_character_matching_threshold, ) output = model.visualise_single_image_prediction(image, result) st.image(output) if generate_transcript: ocr_results = predict_ocr( path_to_image, input_character_detection_threshold, input_panel_detection_threshold, input_text_detection_threshold, input_character_character_matching_threshold, input_text_character_matching_threshold, ) transcript = model.generate_transcript_for_single_image(result, ocr_results[0]) st.text(transcript)