Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,49 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
4 |
from peft import PeftModel
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
12 |
|
13 |
-
# Load the
|
14 |
-
|
15 |
|
16 |
-
# Create
|
17 |
-
pipe = pipeline("text-generation", model=
|
18 |
|
19 |
-
|
20 |
-
|
|
|
|
|
21 |
return outputs[0]["generated_text"]
|
22 |
|
|
|
23 |
iface = gr.Interface(
|
24 |
-
fn=
|
25 |
inputs="text",
|
26 |
outputs="text",
|
27 |
-
title="LoRA-Enhanced
|
|
|
28 |
)
|
29 |
|
|
|
30 |
if __name__ == "__main__":
|
31 |
iface.launch()
|
|
|
|
|
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
2 |
from peft import PeftModel
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Step 1: Load the base model
|
6 |
+
base_model_name = "meta-llama/Llama-3.3-70B-Instruct"
|
7 |
+
adapter_repo = "daresearch/Llama-3.3-70B-ft-exec-roles"
|
8 |
|
9 |
+
# Load the base model (LlamaForCausalLM)
|
10 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
base_model_name,
|
12 |
+
device_map="auto", # Distribute model across GPUs (if available)
|
13 |
+
torch_dtype=torch.float16, # Use FP16 precision to save memory
|
14 |
+
)
|
15 |
+
|
16 |
+
# Load the LoRA adapter into the base model
|
17 |
+
model_with_adapter = PeftModel.from_pretrained(
|
18 |
+
base_model,
|
19 |
+
adapter_repo,
|
20 |
+
device_map="auto",
|
21 |
+
)
|
22 |
|
23 |
+
# Extract the underlying base model for compatibility with pipelines
|
24 |
+
underlying_model = model_with_adapter.base_model
|
|
|
25 |
|
26 |
+
# Load the tokenizer
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
28 |
|
29 |
+
# Create the text generation pipeline
|
30 |
+
pipe = pipeline("text-generation", model=underlying_model, tokenizer=tokenizer)
|
31 |
|
32 |
+
# Define the Gradio interface function
|
33 |
+
def generate_text(prompt):
|
34 |
+
# Use the pipeline to generate text
|
35 |
+
outputs = pipe(prompt, max_length=200)
|
36 |
return outputs[0]["generated_text"]
|
37 |
|
38 |
+
# Create the Gradio interface
|
39 |
iface = gr.Interface(
|
40 |
+
fn=generate_text,
|
41 |
inputs="text",
|
42 |
outputs="text",
|
43 |
+
title="LoRA-Enhanced LLaMA Text Generator",
|
44 |
+
description="Provide a prompt, and the model will generate a response."
|
45 |
)
|
46 |
|
47 |
+
# Launch the app
|
48 |
if __name__ == "__main__":
|
49 |
iface.launch()
|