Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,24 @@
|
|
1 |
import torch
|
2 |
-
from transformers import
|
3 |
-
from unsloth import SlothModel # For quantized base model
|
4 |
from peft import PeftModel
|
5 |
import gradio as gr
|
6 |
|
7 |
# Step 1: Define the base model and LoRA adapter
|
8 |
-
base_model_name = "
|
9 |
adapter_repo = "daresearch/Llama-3.3-70B-ft-exec-roles"
|
10 |
|
11 |
-
# Step 2: Load the
|
12 |
-
|
13 |
-
config = AutoConfig.from_pretrained(base_model_name)
|
14 |
-
config.rope_scaling = {
|
15 |
-
"type": "linear", # Use "linear" or "dynamic" scaling
|
16 |
-
"factor": 8.0 # Adjust factor based on adapter's context length (e.g., 4096 * 8 = 32k tokens)
|
17 |
-
}
|
18 |
-
|
19 |
-
# Load the quantized base model
|
20 |
-
base_model = SlothModel.from_pretrained(
|
21 |
base_model_name,
|
22 |
-
|
23 |
-
|
24 |
-
torch_dtype=torch.float16, # Use FP16 for efficiency
|
25 |
-
config=config, # Pass updated configuration
|
26 |
)
|
27 |
|
28 |
# Step 3: Load the LoRA adapter
|
29 |
model_with_adapter = PeftModel.from_pretrained(
|
30 |
base_model,
|
31 |
adapter_repo,
|
32 |
-
device_map="auto",
|
33 |
)
|
34 |
|
35 |
# Step 4: Load the tokenizer
|
@@ -37,14 +26,8 @@ tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
|
37 |
|
38 |
# Step 5: Define the inference function
|
39 |
def generate_text(prompt, max_length=1024):
|
40 |
-
|
41 |
-
max_input_length = 1024 # Set maximum allowable context length
|
42 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=max_input_length).to("cuda")
|
43 |
-
|
44 |
-
# Generate output with LoRA-enhanced model
|
45 |
outputs = model_with_adapter.generate(**inputs, max_length=max_length)
|
46 |
-
|
47 |
-
# Decode and return the output
|
48 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
49 |
|
50 |
# Step 6: Create the Gradio interface
|
@@ -55,8 +38,8 @@ iface = gr.Interface(
|
|
55 |
gr.Slider(label="Max Length", minimum=50, maximum=1024, step=10, value=256),
|
56 |
],
|
57 |
outputs="text",
|
58 |
-
title="
|
59 |
-
description="Generate text using a
|
60 |
)
|
61 |
|
62 |
# Step 7: Launch the Gradio app
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
3 |
from peft import PeftModel
|
4 |
import gradio as gr
|
5 |
|
6 |
# Step 1: Define the base model and LoRA adapter
|
7 |
+
base_model_name = "meta-llama/Llama-3.3-70B-Instruct" # Replace with correct model name
|
8 |
adapter_repo = "daresearch/Llama-3.3-70B-ft-exec-roles"
|
9 |
|
10 |
+
# Step 2: Load the base model
|
11 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
base_model_name,
|
13 |
+
device_map="auto",
|
14 |
+
torch_dtype=torch.float16, # Use FP16 precision
|
|
|
|
|
15 |
)
|
16 |
|
17 |
# Step 3: Load the LoRA adapter
|
18 |
model_with_adapter = PeftModel.from_pretrained(
|
19 |
base_model,
|
20 |
adapter_repo,
|
21 |
+
device_map="auto",
|
22 |
)
|
23 |
|
24 |
# Step 4: Load the tokenizer
|
|
|
26 |
|
27 |
# Step 5: Define the inference function
|
28 |
def generate_text(prompt, max_length=1024):
|
29 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to("cuda")
|
|
|
|
|
|
|
|
|
30 |
outputs = model_with_adapter.generate(**inputs, max_length=max_length)
|
|
|
|
|
31 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
32 |
|
33 |
# Step 6: Create the Gradio interface
|
|
|
38 |
gr.Slider(label="Max Length", minimum=50, maximum=1024, step=10, value=256),
|
39 |
],
|
40 |
outputs="text",
|
41 |
+
title="LLaMA + LoRA Text Generator",
|
42 |
+
description="Generate text using a LLaMA model with LoRA adapters."
|
43 |
)
|
44 |
|
45 |
# Step 7: Launch the Gradio app
|