Chat / app.py
darkc0de's picture
Update app.py
1b4a909 verified
raw
history blame
7.45 kB
# Import the Gradio library for creating the web interface
import gradio as gr
# Import the InferenceClient from huggingface_hub to interact with the language model
from huggingface_hub import InferenceClient
# --- Configuration Constants ---
# Define the maximum number of tokens the model should generate in a single response
FIXED_MAX_TOKENS = 99999 # Note: This is a very high value, typical values are much lower (e.g., 512, 1024, 2048, 4096 for many models)
# --- Initialize the InferenceClient ---
# For custom OpenAI-compatible APIs, initialize the InferenceClient with the base URL.
# The specific model will be specified in the API call (e.g., chat_completion).
API_BASE_URL = "https://vulture-awake-probably.ngrok-free.app/v1/chat/completions" # Base URL for the custom API
try:
# Initialize the client with the base URL of your API.
# If your API requires an authentication token, you might need to pass it here,
# e.g., client = InferenceClient(base_url=API_BASE_URL, token="YOUR_API_TOKEN")
# or ensure it's set as an environment variable if the client/API supports that.
client = InferenceClient(base_url=API_BASE_URL)
print(f"InferenceClient initialized with base_url: {API_BASE_URL}")
except Exception as e:
print(f"Error initializing InferenceClient with base_url '{API_BASE_URL}': {e}")
# Handle the error appropriately, e.g., by exiting or using a fallback
raise RuntimeError(
"Could not initialize InferenceClient. "
f"Please check the API base URL ('{API_BASE_URL}') and ensure the server is accessible. "
f"Error: {e}"
)
# --- Core Chatbot Logic ---
def respond(message, history):
"""
This function processes the user's message and the chat history to generate a response
from the language model using the custom API.
Args:
message (str): The latest message from the user.
history (list of lists): A list where each inner list contains a pair of
[user_message, ai_message].
Yields:
str: The generated response token by token (for streaming).
"""
# Initialize the messages list
messages = []
# Append past interactions from the history to the messages list
# This provides context to the language model
for user_message, ai_message in history:
if user_message: # Ensure there's a user message
messages.append({"role": "user", "content": user_message})
if ai_message: # Ensure there's an AI message
messages.append({"role": "assistant", "content": ai_message})
# Append the current user's message to the messages list
messages.append({"role": "user", "content": message})
# Initialize an empty string to accumulate the response
response_text = ""
try:
# Make a streaming call to the language model's chat completions endpoint.
# The `model` parameter specifies which model to use at the endpoint.
stream = client.chat_completion(
messages=messages, # The conversation history and current message
max_tokens=FIXED_MAX_TOKENS, # Maximum tokens for the response
stream=True, # Enable streaming for token-by-token output
)
for chunk in stream:
# Check if the chunk contains content and the content is not None
# The exact structure of the chunk can vary based on the model/endpoint
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content is not None:
token = chunk.choices[0].delta.content # Extract the token from the chunk
response_text += token # Append the token to the response string
yield response_text # Yield the accumulated response so far (for streaming UI update)
except Exception as e:
# If any error occurs during the API call, yield an error message
error_message = f"An error occurred during model inference: {e}"
print(error_message) # Also print to console for debugging
yield error_message
# --- Gradio Interface Definition ---
# URL for the header image
header_image_path = "https://cdn-uploads.huggingface.co/production/uploads/6540a02d1389943fef4d2640/j61iZTDaK9g0UW3aWGwWi.gif"
# Ko-fi widget script
kofi_script = """
<script src='https://storage.ko-fi.com/cdn/scripts/overlay-widget.js'></script>
<script>
kofiWidgetOverlay.draw('sonnydesorbo', {
'type': 'floating-chat',
'floating-chat.donateButton.text': 'Support me',
'floating-chat.donateButton.background-color': '#00b9fe',
'floating-chat.donateButton.text-color': '#fff'
});
</script>
"""
# Ko-fi button HTML
kofi_button_html = """
<div style="text-align: center; padding: 20px;">
<a href='https://ko-fi.com/Z8Z51E5TIG' target='_blank'>
<img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi5.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' />
</a>
</div>
"""
# Create a Gradio Blocks layout for more control over the interface
# theme=gr.themes.Soft() applies a soft visual theme
# Add the kofi_script to the head of the HTML page
with gr.Blocks(theme=gr.themes.Soft(), head=kofi_script) as demo:
# Display an image at the top of the chatbot interface
gr.Image(
value=header_image_path, # Source of the image
label="Chatbot Header", # Alt text or label (not shown due to show_label=False)
show_label=False, # Hide the label text
interactive=False, # Make the image non-interactive
height=150, # Set the height of the image
elem_id="chatbot-logo" # Assign an HTML ID for potential CSS styling
)
# Create the chat interface component
gr.ChatInterface(
fn=respond, # The function to call when a message is sent
chatbot=gr.Chatbot( # Configure the chatbot display area
height=650 # Set the height of the chat history display
),
# Additional parameters for ChatInterface can be added here, e.g.:
# title="Xortron7 Chat",
# description="Chat with Xortron7, your AI assistant.",
# examples=[["Hello!", None], ["What is Gradio?", None]],
# retry_btn=None, # Removes the retry button
# undo_btn="Delete Previous", # Customizes the undo button
# clear_btn="Clear Chat", # Customizes the clear button
)
# Add the Ko-fi button at the bottom
gr.HTML(kofi_button_html) #
# --- Application Entry Point ---
if __name__ == "__main__":
# Launch the Gradio web server
# show_api=False disables the API documentation page
# share=False prevents creating a public Gradio link (for local development)
try:
demo.launch(show_api=False, share=False)
except NameError as ne:
# This might happen if 'client' was not defined due to an error during initialization
print(f"Gradio demo could not be launched. 'client' might not have been initialized: {ne}")
except RuntimeError as re:
# This catches the RuntimeError raised if client initialization failed explicitly
print(f"Gradio demo could not be launched due to an error during client initialization: {re}")
except Exception as e:
print(f"An unexpected error occurred when trying to launch Gradio demo: {e}")