Spaces:
Runtime error
Runtime error
File size: 5,387 Bytes
7f2805a 4d79a0c 7f2805a 4d79a0c 7f2805a 4d79a0c 7f2805a 4d79a0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import pandas as pd
import numpy as np
import tensorflow as tf
import random
import matplotlib.pyplot as plt
import gradio as gr
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
from tensorflow.keras.callbacks import EarlyStopping
def create_dataset(data, time_step=1):
X, y = [], []
for i in range(len(data) - time_step - 1):
a = data[i:(i + time_step), :]
X.append(a)
y.append(data[i + time_step, :])
return np.array(X), np.array(y)
def predict_future(model, initial_data, time_step, num_months):
predictions = []
current_data = initial_data[-time_step:]
for _ in range(num_months * 30):
current_data_reshaped = current_data.reshape(1, time_step, current_data.shape[1])
next_prediction = model.predict(current_data_reshaped)
predictions.append(next_prediction[0])
current_data = np.append(current_data[1:], next_prediction, axis=0)
return np.array(predictions)
def generate_plots(file):
seed = 65
tf.random.set_seed(seed)
np.random.seed(seed)
random.seed(seed)
# Чтение данных из Excel файла
data = pd.read_excel(file)
data.dropna(inplace=True)
data = data[['EUR_RUB', 'GBP_RUB', 'USD_RUB']]
values = data.values
scaler = MinMaxScaler()
scaled_values = scaler.fit_transform(values)
time_step = 30
X, y = create_dataset(scaled_values, time_step)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], X_train.shape[2])
X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], X_test.shape[2])
model = Sequential()
model.add(LSTM(256, return_sequences=True, input_shape=(X_train.shape[1], X_train.shape[2])))
model.add(Dropout(0.3))
model.add(LSTM(128, return_sequences=True))
model.add(Dropout(0.3))
model.add(LSTM(64, return_sequences=False))
model.add(Dropout(0.3))
model.add(Dense(3))
model.compile(optimizer='adam', loss='mean_squared_error')
early_stopping = EarlyStopping(monitor='val_loss', patience=15)
model.fit(X_train, y_train, epochs=100, batch_size=82, validation_data=(X_test, y_test), callbacks=[early_stopping])
num_months_to_predict = 6
future_predictions = predict_future(model, scaled_values[-time_step:], time_step, num_months_to_predict)
future_predictions_rescaled = scaler.inverse_transform(future_predictions)
monthly_eur = np.mean(future_predictions_rescaled[:, 0].reshape(-1, 30), axis=1)
monthly_gbp = np.mean(future_predictions_rescaled[:, 1].reshape(-1, 30), axis=1)
monthly_usd_rub = np.mean(future_predictions_rescaled[:, 2].reshape(-1, 30), axis=1)
start_date = pd.to_datetime("30.06.2024", dayfirst=True) # Начальная дата
date_range = pd.date_range(start=start_date, periods=len(monthly_eur), freq='ME')
plt.figure(figsize=(15, 10))
plt.subplot(3, 1, 1)
plt.plot(date_range, monthly_usd_rub, label='Курс Доллара к Рублю', color='red', marker='o')
plt.title('Прогноз курса доллара к Рублю на 6 месяцев')
plt.xlabel('Месяца')
plt.ylabel('Цена Доллара в Рублях')
plt.legend()
plt.subplot(3, 1, 2)
plt.plot(date_range, monthly_eur, label='Курс Евро к Рублю', color='blue', marker='o')
plt.title('Прогноз курса Евро к Рублю на 6 месяцев')
plt.xlabel('Месяца')
plt.ylabel('Цена Евро в Рублях')
plt.legend()
plt.subplot(3, 1, 3)
plt.plot(date_range, monthly_gbp, label='Курс Фунтов Стерлингов к Рублю', color='green', marker='o')
plt.title('Прогноз курс Фунтов Стерлингов к Рублю на 6 месяцев')
plt.xlabel('Месяца')
plt.ylabel('Цена Фунтов Стерлингов в Рублях')
plt.legend()
plt.tight_layout()
plot_file_path = "predictions.png"
plt.savefig(plot_file_path)
return plot_file_path
def get_currency_values(file, date_input):
data = pd.read_excel(file)
data.dropna(inplace=True)
data['Date'] = pd.to_datetime(data['Date'], dayfirst=True)
date = pd.to_datetime(date_input, dayfirst=True)
row = data[data['Date'] == date]
if not row.empty:
values = row[['EUR_RUB', 'GBP_RUB', 'USD_RUB']].values.flatten()
return f"На {date_input}: USD/RUB: {values[2]}, EUR/RUB: {values[0]}, GBP/RUB: {values[1]}"
else:
return f"Данные на {date_input} не найдены."
app1 = gr.Interface(
fn=get_currency_values,
inputs=[gr.File(label="Загрузите файл Excel"), gr.Text(label="Введите дату (дд.мм.гггг):")],
outputs=gr.Text(label="Результаты валют")
)
app2 = gr.Interface(
fn=generate_plots,
inputs=gr.File(label="Загрузите файл Excel"),
outputs=gr.Image(type="filepath", label="Графики прогнозов"),
)
demo = gr.TabbedInterface([app1, app2], ["Вывод цены за дату", "Предсказания на 6 месяцев"])
demo.launch() |