Spaces:
Build error
Build error
import streamlit as st | |
import torch | |
from transformers import BertTokenizerFast | |
from model import BertForTokenAndSequenceJointClassification | |
def load_model(): | |
tokenizer = BertTokenizerFast.from_pretrained('bert-base-cased') | |
model = BertForTokenAndSequenceJointClassification.from_pretrained( | |
"QCRI/PropagandaTechniquesAnalysis-en-BERT", | |
revision="v0.1.0") | |
return tokenizer, model | |
tokenizer, model = load_model() | |
input = st.text_area('Input', """\ | |
In some instances, it can be highly dangerous to use a medicine for the prevention or treatment of COVID-19 that has not been approved by or has not received emergency use authorization from the FDA. | |
""") | |
inputs = tokenizer.encode_plus(input, return_tensors="pt") | |
outputs = model(**inputs) | |
sequence_class_index = torch.argmax(outputs.sequence_logits, dim=-1) | |
sequence_class = model.sequence_tags[sequence_class_index[0]] | |
token_class_index = torch.argmax(outputs.token_logits, dim=-1) | |
tokens = tokenizer.convert_ids_to_tokens(inputs.input_ids[0][1:-1]) | |
tags = [model.token_tags[i] for i in token_class_index[0].tolist()[1:-1]] | |
st.table(list(zip(tokens, tags))) | |