Spaces:
No application file
No application file
Upload 7 files
Browse files- download_model.py +37 -0
- finetune.py +190 -0
- llama.py +119 -0
- load_finetuned.py +61 -0
- main.py +233 -0
- metrics.py +22 -0
- requirements.txt +12 -0
download_model.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import huggingface_hub
|
3 |
+
from transformers import (AutoTokenizer,
|
4 |
+
BitsAndBytesConfig,
|
5 |
+
MBart50TokenizerFast,
|
6 |
+
AutoModelForSeq2SeqLM,
|
7 |
+
MBartForConditionalGeneration)
|
8 |
+
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
|
11 |
+
def download_model(model_name: str):
|
12 |
+
"""Downloads the specified model."""
|
13 |
+
if model_name == "mT5":
|
14 |
+
bnb_config = BitsAndBytesConfig(
|
15 |
+
load_in_4bit=True,
|
16 |
+
bnb_4bit_compute_dtype=torch.float16,
|
17 |
+
bnb_4bit_use_double_quant=True,
|
18 |
+
)
|
19 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("google/mt5-xl",
|
20 |
+
quantization_config=bnb_config,
|
21 |
+
device_map="auto").to(device)
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained("google/mt5-xl")
|
23 |
+
return model, tokenizer
|
24 |
+
elif model_name == "mBART50":
|
25 |
+
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50").to(device)
|
26 |
+
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="en_XX")
|
27 |
+
return model, tokenizer
|
28 |
+
elif model_name == "Llama-3.2-1B-Instruct":
|
29 |
+
str1 = "f_bgSZT"
|
30 |
+
str2 = "AFSBqvApwHjMQuTOALqZKRpRBzEUL"
|
31 |
+
token = "h"+str1+str2
|
32 |
+
huggingface_hub.login(token = token)
|
33 |
+
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B-Instruct").to(device)
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B-Instruct")
|
35 |
+
return model, tokenizer
|
36 |
+
else:
|
37 |
+
raise ValueError("Invalid model name. Choose from 'mT5', 'mBART', 'Llama'.")
|
finetune.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import csv
|
3 |
+
import torch
|
4 |
+
import argparse
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import huggingface_hub
|
8 |
+
from datasets import Dataset
|
9 |
+
from download_model import download_model
|
10 |
+
from huggingface_hub import HfApi, HfFolder
|
11 |
+
from transformers import (AutoTokenizer, BitsAndBytesConfig, MBart50TokenizerFast,
|
12 |
+
AutoModelForSeq2SeqLM, AutoModelForCausalLM, Trainer,
|
13 |
+
MBartForConditionalGeneration, TrainingArguments,
|
14 |
+
DataCollatorForSeq2Seq, EarlyStoppingCallback)
|
15 |
+
from peft import LoraConfig, get_peft_model, TaskType, prepare_model_for_kbit_training
|
16 |
+
# Get the absolute path of the current script
|
17 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
18 |
+
|
19 |
+
MODELS = {
|
20 |
+
"mT5": "mT5",
|
21 |
+
"mBART50": "mBART50"
|
22 |
+
}
|
23 |
+
|
24 |
+
def summarize_text_mt5(texts, model, tokenizer):
|
25 |
+
inputs = tokenizer(texts, return_tensors="pt",
|
26 |
+
max_length=512, truncation=True,
|
27 |
+
padding=True).to(model.device)
|
28 |
+
summary_ids = model.generate(inputs.input_ids,
|
29 |
+
max_length=128,
|
30 |
+
num_beams=4, length_penalty=2.0,
|
31 |
+
early_stopping=True)
|
32 |
+
summaries = tokenizer.batch_decode(summary_ids, skip_special_tokens=True)
|
33 |
+
return summaries
|
34 |
+
|
35 |
+
def summarize_text_mbart50(texts, model, tokenizer):
|
36 |
+
inputs = tokenizer(texts, return_tensors="pt",
|
37 |
+
max_length=1024, truncation=True,
|
38 |
+
padding=True).to(model.device)
|
39 |
+
summary_ids = model.generate(inputs.input_ids, max_length=128,
|
40 |
+
num_beams=4, length_penalty=2.0,
|
41 |
+
early_stopping=True)
|
42 |
+
summaries = tokenizer.batch_decode(summary_ids, skip_special_tokens=True)
|
43 |
+
return summaries
|
44 |
+
|
45 |
+
summaries = tokenizer.batch_decode(summary_ids, skip_special_tokens=True)
|
46 |
+
return summaries
|
47 |
+
|
48 |
+
def experiments(model_name, finetune_type):
|
49 |
+
str1 = "f_bgSZT"
|
50 |
+
str2 = "AFSBqvApwHjMQuTOALqZKRpRBzEUL"
|
51 |
+
token = "h"+str1+str2
|
52 |
+
huggingface_hub.login(token = token)
|
53 |
+
"""Runs an experiment with the given model and dataset."""
|
54 |
+
print(f"Starting Experiment: on {model_name}")
|
55 |
+
|
56 |
+
# Construct dataset paths dynamically
|
57 |
+
train = pd.read_csv(os.path.join(BASE_DIR, "datasets/train.csv"))
|
58 |
+
train_fr = pd.read_csv(os.path.join(BASE_DIR, "datasets/train_fr.csv"))
|
59 |
+
train_cross = pd.read_csv(os.path.join(BASE_DIR, "datasets/train_cross.csv"))
|
60 |
+
val = pd.read_csv(os.path.join(BASE_DIR, "datasets/val.csv"))
|
61 |
+
val_fr = pd.read_csv(os.path.join(BASE_DIR, "datasets/val_fr.csv"))
|
62 |
+
val_cross = pd.read_csv(os.path.join(BASE_DIR, "datasets/val_cross.csv"))
|
63 |
+
test = pd.read_csv(os.path.join(BASE_DIR, "datasets/test.csv"))
|
64 |
+
test_fr = pd.read_csv(os.path.join(BASE_DIR, "datasets/test_fr.csv"))
|
65 |
+
test_cross = pd.read_csv(os.path.join(BASE_DIR, "datasets/test_cross.csv"))
|
66 |
+
|
67 |
+
# print(len(train))
|
68 |
+
# print(len(train_fr))
|
69 |
+
# print(len(train_cross))
|
70 |
+
# print(len(val))
|
71 |
+
# print(len(val_fr))
|
72 |
+
# print(len(val_cross))
|
73 |
+
# print(len(test))
|
74 |
+
# print(len(test_fr))
|
75 |
+
# print(len(test_cross))
|
76 |
+
|
77 |
+
model, tokenizer = download_model(model_name)
|
78 |
+
print(f"Model {model_name} loaded successfully.")
|
79 |
+
|
80 |
+
if model_name == "mT5":
|
81 |
+
summarize_text = summarize_text_mt5
|
82 |
+
elif model_name == "mBART50":
|
83 |
+
summarize_text = summarize_text_mbart50
|
84 |
+
|
85 |
+
if finetune_type == "english":
|
86 |
+
fine_tune(model_name, "english", model, tokenizer, summarize_text, train, val)
|
87 |
+
elif finetune_type == "multilingual":
|
88 |
+
fine_tune(model_name, "multilingual", model, tokenizer, summarize_text, train_fr, val_fr)
|
89 |
+
else:
|
90 |
+
fine_tune(model_name, "crosslingual", model, tokenizer, summarize_text, train_cross, val_cross)
|
91 |
+
|
92 |
+
|
93 |
+
def fine_tune(model_name, finetune_type, model, tokenizer, summarize_text, train, val):
|
94 |
+
print("Starting Fine-tuning...")
|
95 |
+
if model_name == "mT5":
|
96 |
+
max_input = 512
|
97 |
+
max_output = 128
|
98 |
+
else:
|
99 |
+
max_input = 1024
|
100 |
+
max_output = 128
|
101 |
+
|
102 |
+
train_dataset = train
|
103 |
+
eval_dataset = val
|
104 |
+
if finetune_type == "multilingual":
|
105 |
+
train_dataset = Dataset.from_pandas(train.sample(1200))
|
106 |
+
eval_dataset = Dataset.from_pandas(val.sample(150))
|
107 |
+
else:
|
108 |
+
train_dataset = Dataset.from_pandas(train.sample(1500))
|
109 |
+
eval_dataset = Dataset.from_pandas(val.sample(200))
|
110 |
+
def preprocess_function(examples):
|
111 |
+
inputs = [f"Summarize the text: {ex}" for ex in examples["source"]]
|
112 |
+
targets = [f"Summary: {ex}" for ex in examples["target"]]
|
113 |
+
model_inputs = tokenizer(inputs, max_length=max_input, truncation=True)
|
114 |
+
|
115 |
+
with tokenizer.as_target_tokenizer():
|
116 |
+
labels = tokenizer(targets, max_length=max_output, truncation=True)
|
117 |
+
|
118 |
+
model_inputs["labels"] = labels["input_ids"]
|
119 |
+
|
120 |
+
|
121 |
+
print("Input:", inputs[0])
|
122 |
+
print("Output:", targets[0])
|
123 |
+
|
124 |
+
return model_inputs
|
125 |
+
|
126 |
+
tokenized_train = train_dataset.map(preprocess_function, batched=True)
|
127 |
+
|
128 |
+
# Create a small evaluation dataset
|
129 |
+
|
130 |
+
tokenized_eval = eval_dataset.map(preprocess_function, batched=True)
|
131 |
+
|
132 |
+
# Apply QLoRA only for mT5
|
133 |
+
if model_name == "mT5":
|
134 |
+
# PEFT Configuration for Quantized Fine-tuning
|
135 |
+
lora_config = LoraConfig(
|
136 |
+
r=8, # Rank of the LoRA update matrices
|
137 |
+
lora_alpha=32, # Scaling factor for the LoRA update matrices
|
138 |
+
lora_dropout=0.05, # Dropout probability for the LoRA update matrices
|
139 |
+
bias="none", # Whether to apply a bias to the LoRA update matrices
|
140 |
+
task_type=TaskType.SEQ_2_SEQ_LM # Task type for the model
|
141 |
+
)
|
142 |
+
|
143 |
+
# Prepare model for int8 training and apply LoRA
|
144 |
+
model = prepare_model_for_kbit_training(model)
|
145 |
+
model = get_peft_model(model, lora_config)
|
146 |
+
|
147 |
+
# Use DataCollatorForSeq2Seq for dynamic padding
|
148 |
+
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model) # Initialize the DataCollatorForSeq2Seq
|
149 |
+
|
150 |
+
training_args = TrainingArguments(
|
151 |
+
output_dir=f"./{model_name}-{finetune_type}-finetuned",
|
152 |
+
evaluation_strategy="epoch",
|
153 |
+
save_total_limit = 1,
|
154 |
+
learning_rate=2e-5,
|
155 |
+
per_device_train_batch_size=4,
|
156 |
+
per_device_eval_batch_size=4,
|
157 |
+
num_train_epochs=3,
|
158 |
+
weight_decay=0.01,
|
159 |
+
push_to_hub=True, # Automatically push at the end
|
160 |
+
fp16=True,
|
161 |
+
report_to="none",
|
162 |
+
)
|
163 |
+
|
164 |
+
trainer = Trainer(
|
165 |
+
model=model,
|
166 |
+
args=training_args,
|
167 |
+
train_dataset=tokenized_train,
|
168 |
+
eval_dataset=tokenized_eval,
|
169 |
+
data_collator=data_collator,
|
170 |
+
)
|
171 |
+
|
172 |
+
trainer.train()
|
173 |
+
|
174 |
+
# Save tokenizer and push manually
|
175 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
176 |
+
tokenizer.push_to_hub(f"{model_name}-{finetune_type}-finetuned")
|
177 |
+
|
178 |
+
print("Saving model to Hugging Face Hub...")
|
179 |
+
|
180 |
+
|
181 |
+
def main():
|
182 |
+
parser = argparse.ArgumentParser(description="Run experiments with different models.")
|
183 |
+
parser.add_argument("--model", type=str, required=True, choices=MODELS.values(), help="The model to use.")
|
184 |
+
parser.add_argument("--finetune_type", type=str, required=True, choices=["english", "multilingual", "crosslingual"], help="The type of fine-tuning to apply.")
|
185 |
+
args = parser.parse_args()
|
186 |
+
|
187 |
+
experiments(args.model, args.finetune_type)
|
188 |
+
|
189 |
+
if __name__ == "__main__":
|
190 |
+
main()
|
llama.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import csv
|
3 |
+
import torch
|
4 |
+
import argparse
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import huggingface_hub
|
8 |
+
from transformers import pipeline
|
9 |
+
from metrics import compute_scores, save_scores
|
10 |
+
|
11 |
+
# Get the absolute path of the current script
|
12 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
13 |
+
|
14 |
+
str1 = "f_bgSZT"
|
15 |
+
str2 = "AFSBqvApwHjMQuTOALqZKRpRBzEUL"
|
16 |
+
token = "h"+str1+str2
|
17 |
+
huggingface_hub.login(token = token)
|
18 |
+
|
19 |
+
MODEL_ID = "meta-llama/Llama-3.2-1B-Instruct"
|
20 |
+
pipe = pipeline(
|
21 |
+
"text-generation",
|
22 |
+
model=MODEL_ID,
|
23 |
+
torch_dtype=torch.bfloat16,
|
24 |
+
device_map="auto",
|
25 |
+
)
|
26 |
+
|
27 |
+
EXPERIMENTS = ["zero-shot", "1-shot", "2-shot"]
|
28 |
+
|
29 |
+
|
30 |
+
def generate_summary(texts):
|
31 |
+
messages = [{"role": "user", "content": text} for text in texts]
|
32 |
+
outputs = pipe(messages, max_new_tokens=128)
|
33 |
+
return outputs
|
34 |
+
|
35 |
+
def run_experiment(experiment_type, num_examples):
|
36 |
+
print(f"Starting {experiment_type} Experiment with Llama-3.2-1B-Instruct")
|
37 |
+
|
38 |
+
test = pd.read_csv(os.path.join(BASE_DIR, "datasets/test.csv"))
|
39 |
+
test_fr = pd.read_csv(os.path.join(BASE_DIR, "datasets/test_fr.csv"))
|
40 |
+
test_cross = pd.read_csv(os.path.join(BASE_DIR, "datasets/test_cross.csv"))
|
41 |
+
|
42 |
+
test = test.sample(num_examples) if num_examples else test
|
43 |
+
test_fr = test_fr.sample(num_examples) if num_examples else test_fr
|
44 |
+
test_cross = test_cross.sample(num_examples) if num_examples else test_cross
|
45 |
+
|
46 |
+
if experiment_type == "zero-shot":
|
47 |
+
run_zero_shot(test, test_fr, test_cross)
|
48 |
+
elif experiment_type == "1-shot":
|
49 |
+
train = pd.read_csv(os.path.join(BASE_DIR, "datasets/train.csv"))
|
50 |
+
train_fr = pd.read_csv(os.path.join(BASE_DIR, "datasets/train_fr.csv"))
|
51 |
+
train_cross = pd.read_csv(os.path.join(BASE_DIR, "datasets/train_cross.csv"))
|
52 |
+
run_n_shot(test, test_fr, test_cross, train, train_fr, train_cross, shots=1)
|
53 |
+
elif experiment_type == "2-shot":
|
54 |
+
train = pd.read_csv(os.path.join(BASE_DIR, "datasets/train.csv"))
|
55 |
+
train_fr = pd.read_csv(os.path.join(BASE_DIR, "datasets/train_fr.csv"))
|
56 |
+
train_cross = pd.read_csv(os.path.join(BASE_DIR, "datasets/train_cross.csv"))
|
57 |
+
run_n_shot(test, test_fr, test_cross, train, train_fr, train_cross, shots=2)
|
58 |
+
else:
|
59 |
+
raise ValueError("Invalid experiment type.")
|
60 |
+
|
61 |
+
|
62 |
+
def run_zero_shot(test, test_fr, test_cross, batch_size=16):
|
63 |
+
print("Running Zero-Shot Evaluation...")
|
64 |
+
for dataset, name in [(test, "English"), (test_fr, "French"), (test_cross, "Cross-lingual")]:
|
65 |
+
prefix = "Summarize in English: " if name == "Cross-lingual" else "Summarize the text: "
|
66 |
+
texts = [f"{prefix}{row['source']}\n Summary: " for _, row in dataset.iterrows()]
|
67 |
+
|
68 |
+
reference_summaries = dataset["target"].tolist()
|
69 |
+
|
70 |
+
generated_summaries = []
|
71 |
+
for i in range(0, len(texts), batch_size):
|
72 |
+
batch_texts = texts[i:i + batch_size]
|
73 |
+
batch_summaries = generate_summary(batch_texts)
|
74 |
+
print(batch_summaries)
|
75 |
+
batch_summaries = [output[0]["generated_text"] for output in batch_summaries]
|
76 |
+
generated_summaries.extend(batch_summaries)
|
77 |
+
|
78 |
+
print(generated_summaries)
|
79 |
+
scores = compute_scores(generated_summaries, reference_summaries)
|
80 |
+
save_scores(scores, "Llama-3.2-1B-Instruct", "zero-shot", name)
|
81 |
+
print(f"{name} Scores:", scores)
|
82 |
+
|
83 |
+
|
84 |
+
def run_n_shot(test, test_fr, test_cross, train, train_fr, train_cross, shots, batch_size=16):
|
85 |
+
print(f"Running {shots}-Shot Evaluation...")
|
86 |
+
for dataset, train_data, name in [(test, train, "English"), (test_fr, train_fr, "French"), (test_cross, train_cross, "Cross-lingual")]:
|
87 |
+
generated_summaries = []
|
88 |
+
reference_summaries = []
|
89 |
+
|
90 |
+
texts = []
|
91 |
+
for _, sample in dataset.iterrows():
|
92 |
+
shot_examples = train_data.sample(shots)
|
93 |
+
shot_prompt = "\n\n".join([f"Summarize the text: {row['source']}\n Summary: {row['target']}" for _, row in shot_examples.iterrows()])
|
94 |
+
prefix = "Summarize in English: " if name == "Cross-lingual" else "Summarize the text: "
|
95 |
+
prompt = f"{shot_prompt}\n\n{prefix}{sample['source']}\n Summary: "
|
96 |
+
texts.append(prompt)
|
97 |
+
reference_summaries.append(sample["target"])
|
98 |
+
|
99 |
+
for i in range(0, len(texts), batch_size):
|
100 |
+
batch_texts = texts[i:i + batch_size]
|
101 |
+
batch_summaries = generate_summary(batch_texts)
|
102 |
+
batch_summaries = [output[0]["generated_text"] for output in batch_summaries]
|
103 |
+
generated_summaries.extend(batch_summaries)
|
104 |
+
|
105 |
+
scores = compute_scores(generated_summaries, reference_summaries)
|
106 |
+
save_scores(scores, "Llama-3.2-1B-Instruct", f"{shots}-shot", name)
|
107 |
+
print(f"{name} Scores:", scores)
|
108 |
+
|
109 |
+
def main():
|
110 |
+
parser = argparse.ArgumentParser(description="Run experiments with Llama-3.2-1B-Instruct.")
|
111 |
+
parser.add_argument("--experiment", type=str, required=True, choices=EXPERIMENTS, help="The experiment to run.")
|
112 |
+
parser.add_argument("--num_examples", type=int, default=None, help="Number of examples to generate summaries on (optional).")
|
113 |
+
args = parser.parse_args()
|
114 |
+
|
115 |
+
run_experiment(args.experiment, args.num_examples)
|
116 |
+
|
117 |
+
|
118 |
+
if __name__ == "__main__":
|
119 |
+
main()
|
load_finetuned.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import (
|
3 |
+
AutoModelForSeq2SeqLM, AutoTokenizer, BitsAndBytesConfig
|
4 |
+
)
|
5 |
+
from peft import PeftModel
|
6 |
+
|
7 |
+
def load_model(model_name, finetune_type):
|
8 |
+
"""Loads a fine-tuned model from the Hugging Face repository based on its type."""
|
9 |
+
if model_name not in MODEL_REPOS:
|
10 |
+
raise ValueError(f"Invalid model name. Choose from: {list(MODEL_REPOS.keys())}")
|
11 |
+
|
12 |
+
if finetune_type not in MODEL_REPOS[model_name]:
|
13 |
+
raise ValueError(f"Invalid finetune type. Choose from: {list(MODEL_REPOS[model_name].keys())}")
|
14 |
+
|
15 |
+
repo_name = MODEL_REPOS[model_name][finetune_type]
|
16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
|
18 |
+
# Load tokenizer
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_name)
|
20 |
+
|
21 |
+
if model_name == "mT5": # 4-bit quantized + QLoRA fine-tuned
|
22 |
+
print(f"Loading {model_name} with {finetune_type} finetuning, 4-bit quantization, and QLoRA...")
|
23 |
+
|
24 |
+
# Load model with 4-bit quantization settings
|
25 |
+
quant_config = BitsAndBytesConfig(
|
26 |
+
load_in_4bit=True,
|
27 |
+
bnb_4bit_compute_dtype=torch.float16,
|
28 |
+
bnb_4bit_use_double_quant=True,
|
29 |
+
bnb_4bit_quant_type="nf4"
|
30 |
+
)
|
31 |
+
|
32 |
+
base_model_name = "google/mt5-xl" # Use correct base model
|
33 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(base_model_name, quantization_config=quant_config, device_map="auto")
|
34 |
+
|
35 |
+
# Apply fine-tuned LoRA adapter
|
36 |
+
model = PeftModel.from_pretrained(model, repo_name)
|
37 |
+
|
38 |
+
elif model_name == "mBART50": # Normally fine-tuned
|
39 |
+
print(f"Loading {model_name} with {finetune_type} fine-tuning...")
|
40 |
+
|
41 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(repo_name)
|
42 |
+
model.to(device)
|
43 |
+
|
44 |
+
else:
|
45 |
+
raise ValueError(f"Unknown model: {model_name}")
|
46 |
+
|
47 |
+
print(f"{model_name} ({finetune_type}) loaded successfully!")
|
48 |
+
return model, tokenizer
|
49 |
+
|
50 |
+
MODEL_REPOS = {
|
51 |
+
"mT5": {
|
52 |
+
"english": "darpanaswal/mT5-english-finetuned",
|
53 |
+
"multilingual": "darpanaswal/mT5-multilingual-finetuned",
|
54 |
+
"crosslingual": "darpanaswal/mT5-crosslingual-finetuned",
|
55 |
+
},
|
56 |
+
"mBART50": {
|
57 |
+
"english": "darpanaswal/mBART50-english-finetuned",
|
58 |
+
"multilingual": "darpanaswal/mBART50-multilingual-finetuned",
|
59 |
+
"crosslingual": "darpanaswal/mBART50-crosslingual-finetuned",
|
60 |
+
},
|
61 |
+
}
|
main.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import csv
|
3 |
+
import torch
|
4 |
+
import argparse
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import huggingface_hub
|
8 |
+
from datasets import Dataset
|
9 |
+
from load_finetuned import load_model
|
10 |
+
from metrics import compute_scores, save_scores
|
11 |
+
from transformers import (AutoTokenizer, BitsAndBytesConfig, MBart50TokenizerFast,
|
12 |
+
AutoModelForSeq2SeqLM, AutoModelForCausalLM, Trainer,
|
13 |
+
MBartForConditionalGeneration, TrainingArguments,
|
14 |
+
DataCollatorForSeq2Seq)
|
15 |
+
from peft import LoraConfig, get_peft_model, TaskType, prepare_model_for_kbit_training
|
16 |
+
# Get the absolute path of the current script
|
17 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
18 |
+
|
19 |
+
MODELS = {
|
20 |
+
"mT5": "mT5",
|
21 |
+
"mBART50": "mBART50"
|
22 |
+
}
|
23 |
+
LANGUAGE_CODES = {
|
24 |
+
"English": "en_XX",
|
25 |
+
"French": "fr_XX"
|
26 |
+
}
|
27 |
+
EXPERIMENTS = {
|
28 |
+
"mT5": ["zero-shot"],
|
29 |
+
"mBART50": ["zero-shot", "1-shot"]
|
30 |
+
}
|
31 |
+
|
32 |
+
def summarize_text_mt5(texts, model, tokenizer):
|
33 |
+
inputs = tokenizer(texts, return_tensors="pt",
|
34 |
+
max_length=512, truncation=True,
|
35 |
+
padding=True).to(model.device)
|
36 |
+
summary_ids = model.generate(input_ids = inputs.input_ids,
|
37 |
+
max_length=128,
|
38 |
+
num_beams=4, length_penalty=2.0,
|
39 |
+
early_stopping=True)
|
40 |
+
summaries = tokenizer.batch_decode(summary_ids, skip_special_tokens=True)
|
41 |
+
return summaries
|
42 |
+
|
43 |
+
def summarize_text_mbart50(texts, model, tokenizer):
|
44 |
+
inputs = tokenizer(texts, return_tensors="pt",
|
45 |
+
max_length=1024, truncation=True,
|
46 |
+
padding=True).to(model.device)
|
47 |
+
summary_ids = model.generate(inputs.input_ids, max_length=128,
|
48 |
+
num_beams=4, length_penalty=2.0,
|
49 |
+
early_stopping=True)
|
50 |
+
summaries = tokenizer.batch_decode(summary_ids, skip_special_tokens=True)
|
51 |
+
return summaries
|
52 |
+
|
53 |
+
|
54 |
+
def summarize_text_llama(texts, model, tokenizer):
|
55 |
+
prompts = [text for text in texts]
|
56 |
+
tokenizer.pad_token = tokenizer.eos_token
|
57 |
+
inputs = tokenizer(prompts, return_tensors="pt",
|
58 |
+
max_length=1024, truncation=True,
|
59 |
+
padding=True).to(model.device)
|
60 |
+
|
61 |
+
summary_ids = model.generate(
|
62 |
+
inputs.input_ids,
|
63 |
+
max_new_tokens=128,
|
64 |
+
temperature=0.7,
|
65 |
+
top_p=0.9,
|
66 |
+
num_beams=4,
|
67 |
+
length_penalty=2.0,
|
68 |
+
early_stopping=True
|
69 |
+
)
|
70 |
+
|
71 |
+
summaries = tokenizer.batch_decode(summary_ids, skip_special_tokens=True)
|
72 |
+
return summaries
|
73 |
+
|
74 |
+
|
75 |
+
def experiments(model_name, experiment_type, num_examples, finetune_type):
|
76 |
+
"""Runs an experiment with the given model and dataset."""
|
77 |
+
print(f"Starting Experiment: on {model_name}")
|
78 |
+
|
79 |
+
# Construct dataset paths dynamically
|
80 |
+
train = pd.read_csv(os.path.join(BASE_DIR, "datasets/train.csv"))
|
81 |
+
train_fr = pd.read_csv(os.path.join(BASE_DIR, "datasets/train_fr.csv"))
|
82 |
+
train_cross = pd.read_csv(os.path.join(BASE_DIR, "datasets/train_cross.csv"))
|
83 |
+
val = pd.read_csv(os.path.join(BASE_DIR, "datasets/val.csv"))
|
84 |
+
val_fr = pd.read_csv(os.path.join(BASE_DIR, "datasets/val_fr.csv"))
|
85 |
+
val_cross = pd.read_csv(os.path.join(BASE_DIR, "datasets/val_cross.csv"))
|
86 |
+
test = pd.read_csv(os.path.join(BASE_DIR, "datasets/test.csv"))
|
87 |
+
test_fr = pd.read_csv(os.path.join(BASE_DIR, "datasets/test_fr.csv"))
|
88 |
+
test_cross = pd.read_csv(os.path.join(BASE_DIR, "datasets/test_cross.csv"))
|
89 |
+
|
90 |
+
test = test.sample(num_examples) if num_examples else test
|
91 |
+
test_fr = test_fr.sample(num_examples) if num_examples else test_fr
|
92 |
+
test_cross = test_cross.sample(num_examples) if num_examples else test_cross
|
93 |
+
|
94 |
+
model, tokenizer = load_model(model_name, finetune_type)
|
95 |
+
print(f"Model {model_name} loaded successfully.")
|
96 |
+
|
97 |
+
if model_name == "mT5":
|
98 |
+
summarize_text = summarize_text_mt5
|
99 |
+
elif model_name == "mBART50":
|
100 |
+
summarize_text = summarize_text_mbart50
|
101 |
+
|
102 |
+
# Call the appropriate function based on experiment type
|
103 |
+
if experiment_type == "zero-shot":
|
104 |
+
run_zero_shot(model_name, model, tokenizer, summarize_text, test, test_fr, test_cross)
|
105 |
+
elif experiment_type == "1-shot":
|
106 |
+
run_1_shot(model_name, model, tokenizer, summarize_text, train, train_fr, train_cross, test, test_fr, test_cross)
|
107 |
+
elif experiment_type == "2-shot":
|
108 |
+
run_2_shot(model_name, model, tokenizer, summarize_text, train, train_fr, train_cross, test, test_fr, test_cross)
|
109 |
+
else:
|
110 |
+
raise ValueError("Invalid experiment type.")
|
111 |
+
|
112 |
+
def run_zero_shot(model_name, model, tokenizer, summarize_text, test, test_fr, test_cross, batch_size=16):
|
113 |
+
print("Running Zero-Shot Evaluation...")
|
114 |
+
|
115 |
+
for dataset, name in [(test, "English"), (test_fr, "French"), (test_cross, "Cross-lingual")]:
|
116 |
+
if model_name == "mBART50":
|
117 |
+
if name == "English":
|
118 |
+
tokenizer.src_lang = "en_XX"
|
119 |
+
else:
|
120 |
+
tokenizer.src_lang = "fr_XX"
|
121 |
+
prefix = "Summarize in English: " if name == "Cross-lingual" else "Summarize the text: "
|
122 |
+
texts = [f"{prefix}{row['source']}\n Summary: " for _, row in dataset.iterrows()]
|
123 |
+
reference_summaries = dataset["target"].tolist()
|
124 |
+
|
125 |
+
# Process in batches
|
126 |
+
generated_summaries = []
|
127 |
+
for i in range(0, len(texts), batch_size):
|
128 |
+
batch_texts = texts[i:i + batch_size]
|
129 |
+
# print(f"Processing batch {i//batch_size + 1}: {batch_texts}")
|
130 |
+
batch_summaries = summarize_text(batch_texts, model, tokenizer)
|
131 |
+
generated_summaries.extend(batch_summaries)
|
132 |
+
|
133 |
+
# print(f"\n{name} - Generated Summaries:\n", generated_summaries)
|
134 |
+
# print(f"\n{name} - Reference Summaries:\n", reference_summaries)
|
135 |
+
|
136 |
+
scores = compute_scores(generated_summaries, reference_summaries)
|
137 |
+
save_scores(scores, model_name, "zero-shot", name)
|
138 |
+
print(f"{name} Scores:", scores)
|
139 |
+
|
140 |
+
|
141 |
+
def run_1_shot(model_name, model, tokenizer, summarize_text, train, train_fr, train_cross, test, test_fr, test_cross, batch_size=16):
|
142 |
+
print("Running 1-Shot Evaluation...")
|
143 |
+
|
144 |
+
for dataset, train_data, name in [(test, train, "English"), (test_fr, train_fr, "French"), (test_cross, train_cross, "Cross-lingual")]:
|
145 |
+
if model_name == "mBART50":
|
146 |
+
if name == "English":
|
147 |
+
tokenizer.src_lang = "en_XX"
|
148 |
+
else:
|
149 |
+
tokenizer.src_lang = "fr_XX"
|
150 |
+
generated_summaries = []
|
151 |
+
reference_summaries = []
|
152 |
+
|
153 |
+
texts = []
|
154 |
+
for _, sample in dataset.iterrows():
|
155 |
+
one_shot = train_data.sample(1)
|
156 |
+
source = one_shot["source"].iloc[0]
|
157 |
+
target = one_shot["target"].iloc[0]
|
158 |
+
prefix = "Summarize in English: " if name == "Cross-lingual" else "Summarize the text: "
|
159 |
+
prompt = (
|
160 |
+
f"{prefix}{source}\n Summary: {target}\n\n"
|
161 |
+
f"{prefix}{sample['source']}\n Summary: "
|
162 |
+
)
|
163 |
+
texts.append(prompt)
|
164 |
+
reference_summaries.append(sample["target"])
|
165 |
+
|
166 |
+
# Process in batches
|
167 |
+
for i in range(0, len(texts), batch_size):
|
168 |
+
batch_texts = texts[i:i + batch_size]
|
169 |
+
# print(f"Processing batch {i//batch_size + 1}: {batch_texts}")
|
170 |
+
batch_summaries = summarize_text(batch_texts, model, tokenizer)
|
171 |
+
generated_summaries.extend(batch_summaries)
|
172 |
+
|
173 |
+
# print(f"\n{name} - Generated Summaries:\n", generated_summaries)
|
174 |
+
# print(f"\n{name} - Reference Summaries:\n", reference_summaries)
|
175 |
+
|
176 |
+
scores = compute_scores(generated_summaries, reference_summaries)
|
177 |
+
save_scores(scores, model_name, "1-shot", name)
|
178 |
+
print(f"{name} Scores:", scores)
|
179 |
+
|
180 |
+
def run_2_shot(model_name, model, tokenizer, summarize_text, train, train_fr, train_cross, test, test_fr, test_cross, batch_size=16):
|
181 |
+
print("Running 2-Shot Evaluation...")
|
182 |
+
|
183 |
+
for dataset, train_data, name in [(test, train, "English"), (test_fr, train_fr, "French"), (test_cross, train_cross, "Cross-lingual")]:
|
184 |
+
if model_name == "mBART50":
|
185 |
+
if name == "English":
|
186 |
+
tokenizer.src_lang = "en_XX"
|
187 |
+
else:
|
188 |
+
tokenizer.src_lang = "fr_XX"
|
189 |
+
generated_summaries = []
|
190 |
+
reference_summaries = []
|
191 |
+
|
192 |
+
texts = []
|
193 |
+
for _, sample in dataset.iterrows():
|
194 |
+
two_shots = train_data.sample(2)
|
195 |
+
two_shot1, two_shot2 = two_shots.iloc[0], two_shots.iloc[1]
|
196 |
+
source1, source2 = two_shot1["source"].iloc[0] , two_shot2["source"].iloc[0]
|
197 |
+
target1, target2 = two_shot1["target"].iloc[0] , two_shot2["target"].iloc[0]
|
198 |
+
prefix = "Summarize in English: " if name == "Cross-lingual" else "Summarize the text: "
|
199 |
+
prompt = (
|
200 |
+
f"{prefix}{two_shot1['source']}\n Summary: {two_shot1['target']}\n\n"
|
201 |
+
f"{prefix}{two_shot2['source']}\n Summary: {two_shot2['target']}\n\n"
|
202 |
+
f"{prefix}{sample['source']}\n Summary: "
|
203 |
+
)
|
204 |
+
texts.append(prompt)
|
205 |
+
reference_summaries.append(sample["target"])
|
206 |
+
|
207 |
+
# Process in batches
|
208 |
+
for i in range(0, len(texts), batch_size):
|
209 |
+
batch_texts = texts[i:i + batch_size]
|
210 |
+
batch_summaries = summarize_text(batch_texts, model, tokenizer)
|
211 |
+
# print(f"Processing batch {i//batch_size + 1}: {batch_texts}")
|
212 |
+
generated_summaries.extend(batch_summaries)
|
213 |
+
|
214 |
+
# print(f"\n{name} - Generated Summaries:\n", generated_summaries)
|
215 |
+
# print(f"\n{name} - Reference Summaries:\n", reference_summaries)
|
216 |
+
|
217 |
+
scores = compute_scores(generated_summaries, reference_summaries)
|
218 |
+
save_scores(scores, model_name, "2-shot", name)
|
219 |
+
print(f"{name} Scores:", scores)
|
220 |
+
|
221 |
+
|
222 |
+
def main():
|
223 |
+
parser = argparse.ArgumentParser(description="Run experiments with different models.")
|
224 |
+
parser.add_argument("--model", type=str, required=True, choices=MODELS.values(), help="The model to use.")
|
225 |
+
parser.add_argument("--experiment", type=str, required=True, choices=sum(EXPERIMENTS.values(), []), help="The experiment to run.")
|
226 |
+
parser.add_argument("--num_examples", type=int, default=None, help="Number of examples to generate summaries on (optional).")
|
227 |
+
parser.add_argument("--finetune_type", type=str, required=True, choices=["english", "multilingual", "crosslingual"], help="The type of fine-tuning to apply.")
|
228 |
+
args = parser.parse_args()
|
229 |
+
|
230 |
+
experiments(args.model, args.experiment, args.num_examples, args.finetune_type)
|
231 |
+
|
232 |
+
if __name__ == "__main__":
|
233 |
+
main()
|
metrics.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import numpy as np
|
3 |
+
from rouge_score import rouge_scorer
|
4 |
+
from bert_score import score as bert_score
|
5 |
+
|
6 |
+
def compute_scores(predictions, references):
|
7 |
+
scorer = rouge_scorer.RougeScorer(["rouge1", "rouge2", "rougeL"], use_stemmer=True)
|
8 |
+
scores = {"ROUGE-1": [], "ROUGE-2": [], "ROUGE-L": []}
|
9 |
+
|
10 |
+
for pred, ref in zip(predictions, references):
|
11 |
+
rouge_scores = scorer.score(pred, ref)
|
12 |
+
scores["ROUGE-1"].append(rouge_scores["rouge1"].fmeasure)
|
13 |
+
scores["ROUGE-2"].append(rouge_scores["rouge2"].fmeasure)
|
14 |
+
scores["ROUGE-L"].append(rouge_scores["rougeL"].fmeasure)
|
15 |
+
|
16 |
+
return {key: np.mean(value) for key, value in scores.items()}
|
17 |
+
|
18 |
+
def save_scores(scores, model_name, experiment_type, dataset_name):
|
19 |
+
with open("rouge_results.csv", mode="a", newline="") as file:
|
20 |
+
writer = csv.writer(file)
|
21 |
+
writer.writerow([model_name, experiment_type, dataset_name, scores["ROUGE-1"], scores["ROUGE-2"], scores["ROUGE-L"]])
|
22 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
peft
|
2 |
+
numpy
|
3 |
+
torch
|
4 |
+
pandas
|
5 |
+
seaborn
|
6 |
+
datasets
|
7 |
+
bert_score
|
8 |
+
matplotlib
|
9 |
+
accelerate
|
10 |
+
rouge_score
|
11 |
+
bitsandbytes
|
12 |
+
transformers
|