darpanaswal commited on
Commit
7c1bf97
·
verified ·
1 Parent(s): 48c5057

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +4 -36
main.py CHANGED
@@ -13,7 +13,7 @@ from transformers import (AutoTokenizer, BitsAndBytesConfig, MBart50TokenizerFas
13
  MBartForConditionalGeneration, TrainingArguments,
14
  DataCollatorForSeq2Seq)
15
  from peft import LoraConfig, get_peft_model, TaskType, prepare_model_for_kbit_training
16
- # Get the absolute path of the current script
17
  BASE_DIR = os.path.dirname(os.path.abspath(__file__))
18
 
19
  MODELS = {
@@ -50,28 +50,6 @@ def summarize_text_mbart50(texts, model, tokenizer):
50
  summaries = tokenizer.batch_decode(summary_ids, skip_special_tokens=True)
51
  return summaries
52
 
53
-
54
- def summarize_text_llama(texts, model, tokenizer):
55
- prompts = [text for text in texts]
56
- tokenizer.pad_token = tokenizer.eos_token
57
- inputs = tokenizer(prompts, return_tensors="pt",
58
- max_length=1024, truncation=True,
59
- padding=True).to(model.device)
60
-
61
- summary_ids = model.generate(
62
- inputs.input_ids,
63
- max_new_tokens=60,
64
- temperature=0.7,
65
- top_p=0.9,
66
- num_beams=4,
67
- length_penalty=2.0,
68
- early_stopping=True
69
- )
70
-
71
- summaries = tokenizer.batch_decode(summary_ids, skip_special_tokens=True)
72
- return summaries
73
-
74
-
75
  def experiments(model_name, experiment_type, num_examples, finetune_type):
76
  """Runs an experiment with the given model and dataset."""
77
  print(f"Starting Experiment: on {model_name}")
@@ -99,7 +77,6 @@ def experiments(model_name, experiment_type, num_examples, finetune_type):
99
  elif model_name == "mBART50":
100
  summarize_text = summarize_text_mbart50
101
 
102
- # Call the appropriate function based on experiment type
103
  if experiment_type == "zero-shot":
104
  run_zero_shot(model_name, model, tokenizer, summarize_text, test, test_fr, test_cross)
105
  elif experiment_type == "1-shot":
@@ -126,13 +103,10 @@ def run_zero_shot(model_name, model, tokenizer, summarize_text, test, test_fr, t
126
  generated_summaries = []
127
  for i in range(0, len(texts), batch_size):
128
  batch_texts = texts[i:i + batch_size]
129
- # print(f"Processing batch {i//batch_size + 1}: {batch_texts}")
130
  batch_summaries = summarize_text(batch_texts, model, tokenizer)
131
  generated_summaries.extend(batch_summaries)
132
 
133
- # print(f"\n{name} - Generated Summaries:\n", generated_summaries)
134
- # print(f"\n{name} - Reference Summaries:\n", reference_summaries)
135
-
136
  scores = compute_scores(generated_summaries, reference_summaries)
137
  save_scores(scores, model_name, "zero-shot", name)
138
  print(f"{name} Scores:", scores)
@@ -166,13 +140,10 @@ def run_1_shot(model_name, model, tokenizer, summarize_text, train, train_fr, tr
166
  # Process in batches
167
  for i in range(0, len(texts), batch_size):
168
  batch_texts = texts[i:i + batch_size]
169
- # print(f"Processing batch {i//batch_size + 1}: {batch_texts}")
170
  batch_summaries = summarize_text(batch_texts, model, tokenizer)
171
  generated_summaries.extend(batch_summaries)
172
 
173
- # print(f"\n{name} - Generated Summaries:\n", generated_summaries)
174
- # print(f"\n{name} - Reference Summaries:\n", reference_summaries)
175
-
176
  scores = compute_scores(generated_summaries, reference_summaries)
177
  save_scores(scores, model_name, "1-shot", name)
178
  print(f"{name} Scores:", scores)
@@ -208,12 +179,9 @@ def run_2_shot(model_name, model, tokenizer, summarize_text, train, train_fr, tr
208
  for i in range(0, len(texts), batch_size):
209
  batch_texts = texts[i:i + batch_size]
210
  batch_summaries = summarize_text(batch_texts, model, tokenizer)
211
- # print(f"Processing batch {i//batch_size + 1}: {batch_texts}")
212
  generated_summaries.extend(batch_summaries)
213
 
214
- # print(f"\n{name} - Generated Summaries:\n", generated_summaries)
215
- # print(f"\n{name} - Reference Summaries:\n", reference_summaries)
216
-
217
  scores = compute_scores(generated_summaries, reference_summaries)
218
  save_scores(scores, model_name, "2-shot", name)
219
  print(f"{name} Scores:", scores)
 
13
  MBartForConditionalGeneration, TrainingArguments,
14
  DataCollatorForSeq2Seq)
15
  from peft import LoraConfig, get_peft_model, TaskType, prepare_model_for_kbit_training
16
+
17
  BASE_DIR = os.path.dirname(os.path.abspath(__file__))
18
 
19
  MODELS = {
 
50
  summaries = tokenizer.batch_decode(summary_ids, skip_special_tokens=True)
51
  return summaries
52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  def experiments(model_name, experiment_type, num_examples, finetune_type):
54
  """Runs an experiment with the given model and dataset."""
55
  print(f"Starting Experiment: on {model_name}")
 
77
  elif model_name == "mBART50":
78
  summarize_text = summarize_text_mbart50
79
 
 
80
  if experiment_type == "zero-shot":
81
  run_zero_shot(model_name, model, tokenizer, summarize_text, test, test_fr, test_cross)
82
  elif experiment_type == "1-shot":
 
103
  generated_summaries = []
104
  for i in range(0, len(texts), batch_size):
105
  batch_texts = texts[i:i + batch_size]
106
+ print(f"Processing batch {i//batch_size + 1}")
107
  batch_summaries = summarize_text(batch_texts, model, tokenizer)
108
  generated_summaries.extend(batch_summaries)
109
 
 
 
 
110
  scores = compute_scores(generated_summaries, reference_summaries)
111
  save_scores(scores, model_name, "zero-shot", name)
112
  print(f"{name} Scores:", scores)
 
140
  # Process in batches
141
  for i in range(0, len(texts), batch_size):
142
  batch_texts = texts[i:i + batch_size]
143
+ print(f"Processing batch {i//batch_size + 1}")
144
  batch_summaries = summarize_text(batch_texts, model, tokenizer)
145
  generated_summaries.extend(batch_summaries)
146
 
 
 
 
147
  scores = compute_scores(generated_summaries, reference_summaries)
148
  save_scores(scores, model_name, "1-shot", name)
149
  print(f"{name} Scores:", scores)
 
179
  for i in range(0, len(texts), batch_size):
180
  batch_texts = texts[i:i + batch_size]
181
  batch_summaries = summarize_text(batch_texts, model, tokenizer)
182
+ print(f"Processing batch {i//batch_size + 1}")
183
  generated_summaries.extend(batch_summaries)
184
 
 
 
 
185
  scores = compute_scores(generated_summaries, reference_summaries)
186
  save_scores(scores, model_name, "2-shot", name)
187
  print(f"{name} Scores:", scores)