File size: 5,329 Bytes
186113b
 
889c466
186113b
 
889c466
186113b
889c466
186113b
889c466
186113b
 
 
889c466
 
 
 
186113b
889c466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import ssl
import cv2
import torch
import certifi
import numpy as np
import gradio as gr
import torch.nn as nn
from torchvision import models
import torch.nn.functional as F
import matplotlib.pyplot as plt
from PIL import Image, ImageEnhance
import torchvision.transforms as transforms

ssl._create_default_https_context = lambda: ssl.create_default_context(cafile=certifi.where())

# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Number of classes
num_classes = 6

# Load the pre-trained ResNet model
model = models.resnet152(pretrained=True)
for param in model.parameters():
    param.requires_grad = False  # Freeze feature extractor

# Modify the classifier for 6 classes with an additional hidden layer
model.fc = nn.Sequential(
    nn.Linear(model.fc.in_features, 512),
    nn.ReLU(),
    nn.Linear(512, num_classes)
)

# Load trained weights
model.load_state_dict(torch.load('model.pth', map_location=torch.device('cpu')))
model.eval()

# Class labels
class_labels = ['bird', 'cat', 'deer', 'dog', 'frog', 'horse']

# Image transformation function
def transform_image(image):
    """Preprocess the input image."""
    transform = transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])
    img_tensor = transform(image).unsqueeze(0).to(device)
    return img_tensor

# Apply feature filters
def apply_filters(image, brightness, contrast, hue):
    """Adjust Brightness, Contrast, and Hue of the input image."""
    image = image.convert("RGB")  # Ensure RGB mode

    # Adjust brightness
    enhancer = ImageEnhance.Brightness(image)
    image = enhancer.enhance(brightness)

    # Adjust contrast
    enhancer = ImageEnhance.Contrast(image)
    image = enhancer.enhance(contrast)

    # Adjust hue (convert to HSV, modify, and convert back)
    image = np.array(image)
    hsv_image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV).astype(np.float32)
    hsv_image[..., 0] = (hsv_image[..., 0] + hue * 180) % 180  # Adjust hue
    image = cv2.cvtColor(hsv_image.astype(np.uint8), cv2.COLOR_HSV2RGB)

    return Image.fromarray(image)

# Superimposition function
def superimpose_images(base_image, overlay_image, alpha):
    """Superimpose overlay_image onto base_image with a given alpha blend."""
    if overlay_image is None:
        return base_image  # No overlay, return base image as is

    # Resize overlay image to match base image
    overlay_image = overlay_image.resize(base_image.size)

    # Convert to numpy arrays
    base_array = np.array(base_image).astype(float)
    overlay_array = np.array(overlay_image).astype(float)

    # Blend images
    blended_array = (1 - alpha) * base_array + alpha * overlay_array
    blended_array = np.clip(blended_array, 0, 255).astype(np.uint8)

    return Image.fromarray(blended_array)

# Prediction function
def predict(image, brightness, contrast, hue, overlay_image, alpha):
    """Apply filters, superimpose, classify image, and visualize results."""
    if image is None:
        return None, None, None

    # Apply feature filters
    processed_image = apply_filters(image, brightness, contrast, hue)

    # Superimpose overlay image
    final_image = superimpose_images(processed_image, overlay_image, alpha)

    # Convert PIL Image to Tensor
    image_tensor = transform_image(final_image)

    with torch.no_grad():
        output = model(image_tensor)
        probabilities = F.softmax(output, dim=1).cpu().numpy()[0]

    # Generate Bar Chart
    with plt.xkcd():
        fig, ax = plt.subplots(figsize=(5, 3))
        ax.bar(class_labels, probabilities, color='skyblue')
        ax.set_ylabel("Probability")
        ax.set_title("Class Probabilities")
        ax.set_ylim([0, 1])
        for i, v in enumerate(probabilities):
            ax.text(i, v + 0.02, f"{v:.2f}", ha='center', fontsize=10)

    return final_image, fig

# Gradio Interface
with gr.Blocks() as interface:
    gr.Markdown("<h2 style='text-align: center;'>Image Classifier with Superimposition & Adjustable Filters</h2>")
    
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="pil", label="Upload Base Image")
            overlay_input = gr.Image(type="pil", label="Upload Overlay Image (Optional)")
            brightness = gr.Slider(0.5, 2.0, value=1.0, label="Brightness")
            contrast = gr.Slider(0.5, 2.0, value=1.0, label="Contrast")
            hue = gr.Slider(-0.5, 0.5, value=0.0, label="Hue")
            alpha = gr.Slider(0.0, 1.0, value=0.5, label="Overlay Weight (Alpha)")

        with gr.Column():
            processed_image = gr.Image(label="Final Processed Image")
            bar_chart = gr.Plot(label="Class Probabilities")

    inputs = [image_input, brightness, contrast, hue, overlay_input, alpha]
    outputs = [processed_image, bar_chart]

    # Event listeners for real-time updates
    image_input.change(predict, inputs=inputs, outputs=outputs)
    overlay_input.change(predict, inputs=inputs, outputs=outputs)
    brightness.change(predict, inputs=inputs, outputs=outputs)
    contrast.change(predict, inputs=inputs, outputs=outputs)
    hue.change(predict, inputs=inputs, outputs=outputs)
    alpha.change(predict, inputs=inputs, outputs=outputs)

interface.launch()