Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ import certifi
|
|
6 |
import numpy as np
|
7 |
import gradio as gr
|
8 |
import torch.nn as nn
|
|
|
9 |
from torchvision import models
|
10 |
import torch.nn.functional as F
|
11 |
import matplotlib.pyplot as plt
|
@@ -32,7 +33,7 @@ with urllib.request.urlopen(url) as f:
|
|
32 |
cifar10_classes = {int(k): v[1] for k, v in imagenet_classes.items()}
|
33 |
|
34 |
# Load the pre-trained ResNet model
|
35 |
-
model = models.
|
36 |
|
37 |
# Modify the classifier for 6 classes with an additional hidden layer
|
38 |
# model.fc = nn.Sequential(
|
@@ -182,83 +183,97 @@ def superimpose_images(base_image, overlay_image, alpha):
|
|
182 |
|
183 |
return Image.fromarray(blended_array)
|
184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
# Prediction function
|
186 |
-
def predict(image, brightness, contrast, hue, overlay_image, alpha):
|
187 |
-
"""
|
188 |
if image is None:
|
189 |
return None, None, None
|
190 |
|
191 |
-
# Apply
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
|
198 |
-
image_tensor = transform_image(final_image)
|
199 |
|
200 |
-
with torch.no_grad():
|
201 |
-
output = model(image_tensor)
|
202 |
-
probabilities = F.softmax(output, dim=1).cpu().numpy()[0]
|
203 |
-
# pred_class = np.argmax(probabilities)
|
204 |
-
# top_5 = torch.topk(probabilities, 5)
|
205 |
-
|
206 |
-
heatmap, _ = gradcam.generate(image_tensor)
|
207 |
-
|
208 |
-
# Create GradCAM overlay
|
209 |
-
final_np = np.array(final_image)
|
210 |
-
heatmap = cv2.resize(heatmap, (final_np.shape[1], final_np.shape[0]))
|
211 |
-
heatmap = np.uint8(255 * heatmap)
|
212 |
-
heatmap_colored = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
|
213 |
-
heatmap_rgb = cv2.cvtColor(heatmap_colored, cv2.COLOR_BGR2RGB)
|
214 |
-
superimposed = cv2.addWeighted(heatmap_rgb, 0.5, final_np, 0.5, 0)
|
215 |
-
gradcam_image = Image.fromarray(superimposed)
|
216 |
-
|
217 |
-
|
218 |
-
# Generate Bar Chart
|
219 |
-
with plt.xkcd():
|
220 |
-
fig, ax = plt.subplots(figsize=(6, 4))
|
221 |
-
top5_indices = np.argsort(probabilities)[-5:][::-1] # Indices of top 5 probabilities
|
222 |
-
top5_probs = probabilities[top5_indices]
|
223 |
-
top5_labels = [class_labels[i] for i in top5_indices]
|
224 |
-
ax.bar(top5_labels, top5_probs, color='skyblue')
|
225 |
-
ax.set_ylabel("Probability")
|
226 |
-
ax.set_title("Class Probabilities")
|
227 |
-
ax.set_ylim([0, 1])
|
228 |
-
plt.tight_layout(pad=3)
|
229 |
-
ax.set_xticklabels(top5_labels, rotation=45, ha="right", fontsize=8)
|
230 |
-
for i, v in enumerate(top5_probs):
|
231 |
-
ax.text(i, v + 0.02, f"{v:.2f}", ha='center', fontsize=10)
|
232 |
-
|
233 |
-
return final_image, gradcam_image, fig
|
234 |
|
235 |
# Gradio Interface
|
236 |
with gr.Blocks() as interface:
|
237 |
-
gr.Markdown("<h2 style='text-align: center;'>
|
238 |
|
239 |
with gr.Row():
|
240 |
with gr.Column():
|
241 |
-
image_input = gr.Image(type="pil", label="
|
242 |
-
overlay_input = gr.Image(type="pil", label="
|
243 |
brightness = gr.Slider(0.5, 2.0, value=1.0, label="Brightness")
|
244 |
contrast = gr.Slider(0.5, 2.0, value=1.0, label="Contrast")
|
245 |
hue = gr.Slider(-0.5, 0.5, value=0.0, label="Hue")
|
246 |
-
alpha = gr.Slider(0.0, 1.0, value=0.5, label="Overlay
|
|
|
247 |
|
248 |
with gr.Column():
|
249 |
-
processed_image = gr.Image(label="
|
250 |
gradcam_output = gr.Image(label="GradCAM Overlay")
|
251 |
-
bar_chart = gr.Plot(label="
|
252 |
|
253 |
-
inputs = [image_input, brightness, contrast, hue, overlay_input, alpha]
|
254 |
outputs = [processed_image, gradcam_output, bar_chart]
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
overlay_input.change(predict, inputs=inputs, outputs=outputs)
|
259 |
-
brightness.change(predict, inputs=inputs, outputs=outputs)
|
260 |
-
contrast.change(predict, inputs=inputs, outputs=outputs)
|
261 |
-
hue.change(predict, inputs=inputs, outputs=outputs)
|
262 |
-
alpha.change(predict, inputs=inputs, outputs=outputs)
|
263 |
|
264 |
interface.launch()
|
|
|
6 |
import numpy as np
|
7 |
import gradio as gr
|
8 |
import torch.nn as nn
|
9 |
+
import torch.optim as optim
|
10 |
from torchvision import models
|
11 |
import torch.nn.functional as F
|
12 |
import matplotlib.pyplot as plt
|
|
|
33 |
cifar10_classes = {int(k): v[1] for k, v in imagenet_classes.items()}
|
34 |
|
35 |
# Load the pre-trained ResNet model
|
36 |
+
model = models.resnet152(pretrained=True)
|
37 |
|
38 |
# Modify the classifier for 6 classes with an additional hidden layer
|
39 |
# model.fc = nn.Sequential(
|
|
|
183 |
|
184 |
return Image.fromarray(blended_array)
|
185 |
|
186 |
+
def generate_adversarial(input_image, orig_pred, epsilon=12/255, steps=50):
|
187 |
+
"""Generate adversarial example"""
|
188 |
+
input_image = transform_image(input_image)
|
189 |
+
delta = torch.zeros_like(input_image, requires_grad=True)
|
190 |
+
opt = optim.SGD([delta], lr=1e-1, momentum=0.9)
|
191 |
+
|
192 |
+
for _ in range(steps):
|
193 |
+
perturbed = torch.clamp(input_image + delta, 0.0, 1.0)
|
194 |
+
output = model(perturbed)
|
195 |
+
loss = -F.cross_entropy(output, torch.tensor([orig_pred], device=device))
|
196 |
+
print(loss.item())
|
197 |
+
|
198 |
+
opt.zero_grad()
|
199 |
+
loss.backward()
|
200 |
+
opt.step()
|
201 |
+
delta.data.clamp_(-epsilon, epsilon)
|
202 |
+
|
203 |
+
return torch.clamp(input_image + delta, 0.0, 1.0)
|
204 |
+
|
205 |
# Prediction function
|
206 |
+
def predict(image, brightness, contrast, hue, overlay_image, alpha, adversarial_switch):
|
207 |
+
"""Main prediction function"""
|
208 |
if image is None:
|
209 |
return None, None, None
|
210 |
|
211 |
+
# Apply preprocessing
|
212 |
+
processed = apply_filters(image, brightness, contrast, hue)
|
213 |
+
final_image = superimpose_images(processed, overlay_image, alpha)
|
214 |
+
|
215 |
+
# Convert to tensor
|
216 |
+
to_tensor = transforms.Compose([transforms.Resize(32), transforms.ToTensor()])
|
217 |
+
# img_tensor_01 = to_tensor(final_image).unsqueeze(0).to(device)
|
218 |
+
|
219 |
+
# Generate adversarial if enabled
|
220 |
+
if adversarial_switch:
|
221 |
+
with torch.no_grad():
|
222 |
+
orig_out = model(transform_image(final_image))
|
223 |
+
orig_pred = torch.argmax(orig_out).item()
|
224 |
+
adv_tensor_01 = generate_adversarial(final_image, orig_pred)
|
225 |
+
final_display = transforms.ToPILImage()(adv_tensor_01.squeeze().cpu().detach())
|
226 |
+
model_input = transform_image(final_display)
|
227 |
+
else:
|
228 |
+
final_display = final_image
|
229 |
+
model_input = transform_image(final_image)
|
230 |
+
|
231 |
+
# Get predictions
|
232 |
+
with torch.no_grad():
|
233 |
+
output = model(model_input)
|
234 |
+
probs = F.softmax(output, dim=1).cpu().numpy()[0]
|
235 |
+
|
236 |
+
# Generate Grad-CAM
|
237 |
+
heatmap, _ = gradcam.generate(model_input)
|
238 |
+
final_np = np.array(final_display)
|
239 |
+
heatmap = cv2.resize(heatmap, final_np.shape[:2][::-1])
|
240 |
+
heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET)
|
241 |
+
superimposed = cv2.addWeighted(cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB), 0.5, final_np, 0.5, 0)
|
242 |
+
|
243 |
+
# Create plot
|
244 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
245 |
+
top5_idx = np.argsort(probs)[-5:][::-1]
|
246 |
+
ax.bar([class_labels[i] for i in top5_idx], probs[top5_idx], color='skyblue')
|
247 |
+
ax.set_ylabel("Probability"), ax.set_title("Class Probabilities")
|
248 |
+
plt.xticks(rotation=45, ha='right', fontsize=8)
|
249 |
+
plt.tight_layout()
|
250 |
|
251 |
+
return final_display, Image.fromarray(superimposed), fig
|
|
|
252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
# Gradio Interface
|
255 |
with gr.Blocks() as interface:
|
256 |
+
gr.Markdown("<h2 style='text-align: center;'>CIFAR-10 Classifier with Adversarial Attacks</h2>")
|
257 |
|
258 |
with gr.Row():
|
259 |
with gr.Column():
|
260 |
+
image_input = gr.Image(type="pil", label="Input Image")
|
261 |
+
overlay_input = gr.Image(type="pil", label="Overlay Image (Optional)")
|
262 |
brightness = gr.Slider(0.5, 2.0, value=1.0, label="Brightness")
|
263 |
contrast = gr.Slider(0.5, 2.0, value=1.0, label="Contrast")
|
264 |
hue = gr.Slider(-0.5, 0.5, value=0.0, label="Hue")
|
265 |
+
alpha = gr.Slider(0.0, 1.0, value=0.5, label="Overlay Alpha")
|
266 |
+
adversarial_switch = gr.Checkbox(label="Add Adversarial Noise")
|
267 |
|
268 |
with gr.Column():
|
269 |
+
processed_image = gr.Image(label="Processed Image")
|
270 |
gradcam_output = gr.Image(label="GradCAM Overlay")
|
271 |
+
bar_chart = gr.Plot(label="Predictions")
|
272 |
|
273 |
+
inputs = [image_input, brightness, contrast, hue, overlay_input, alpha, adversarial_switch]
|
274 |
outputs = [processed_image, gradcam_output, bar_chart]
|
275 |
+
|
276 |
+
for component in [image_input, overlay_input, brightness, contrast, hue, alpha, adversarial_switch]:
|
277 |
+
component.change(predict, inputs=inputs, outputs=outputs)
|
|
|
|
|
|
|
|
|
|
|
278 |
|
279 |
interface.launch()
|