darpanaswal commited on
Commit
24249d1
·
verified ·
1 Parent(s): 3bc4713

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -4
app.py CHANGED
@@ -207,7 +207,6 @@ def generate_adversarial(input_image, orig_pred, epsilon=20/255, steps=500):
207
  # return output
208
  return output
209
 
210
- # Prediction function
211
  def predict(image, brightness, contrast, hue, overlay_image, alpha, adversarial_switch):
212
  """Main prediction function"""
213
  if image is None:
@@ -217,7 +216,7 @@ def predict(image, brightness, contrast, hue, overlay_image, alpha, adversarial_
217
 
218
  # Apply preprocessing
219
  processed = apply_filters(image, brightness, contrast, hue)
220
- final_image = superimpose_images(processed, overlay_image, alpha)
221
 
222
  # Generate adversarial if enabled
223
  if adversarial_switch:
@@ -241,13 +240,13 @@ def predict(image, brightness, contrast, hue, overlay_image, alpha, adversarial_
241
  output = model(model_input)
242
  probs = F.softmax(output, dim=1).cpu().numpy()[0]
243
 
244
- # Generate Grad-CAM
245
  heatmap, _ = gradcam.generate(model_input)
246
  final_np = np.array(final_display)
247
  heatmap = cv2.resize(heatmap, final_np.shape[:2][::-1])
248
  heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET)
249
  superimposed = cv2.addWeighted(cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB), 0.5, final_np, 0.5, 0)
250
-
251
  # Create plot
252
  fig, ax = plt.subplots(figsize=(6, 4))
253
  top5_idx = np.argsort(probs)[-5:][::-1]
 
207
  # return output
208
  return output
209
 
 
210
  def predict(image, brightness, contrast, hue, overlay_image, alpha, adversarial_switch):
211
  """Main prediction function"""
212
  if image is None:
 
216
 
217
  # Apply preprocessing
218
  processed = apply_filters(image, brightness, contrast, hue)
219
+ final_image = superimpose_images(processed, overlay_image, alpha) # Overlay the image properly
220
 
221
  # Generate adversarial if enabled
222
  if adversarial_switch:
 
240
  output = model(model_input)
241
  probs = F.softmax(output, dim=1).cpu().numpy()[0]
242
 
243
+ # Generate Grad-CAM on the properly transformed image with overlay
244
  heatmap, _ = gradcam.generate(model_input)
245
  final_np = np.array(final_display)
246
  heatmap = cv2.resize(heatmap, final_np.shape[:2][::-1])
247
  heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET)
248
  superimposed = cv2.addWeighted(cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB), 0.5, final_np, 0.5, 0)
249
+
250
  # Create plot
251
  fig, ax = plt.subplots(figsize=(6, 4))
252
  top5_idx = np.argsort(probs)[-5:][::-1]