Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -207,7 +207,6 @@ def generate_adversarial(input_image, orig_pred, epsilon=20/255, steps=500):
|
|
207 |
# return output
|
208 |
return output
|
209 |
|
210 |
-
# Prediction function
|
211 |
def predict(image, brightness, contrast, hue, overlay_image, alpha, adversarial_switch):
|
212 |
"""Main prediction function"""
|
213 |
if image is None:
|
@@ -217,7 +216,7 @@ def predict(image, brightness, contrast, hue, overlay_image, alpha, adversarial_
|
|
217 |
|
218 |
# Apply preprocessing
|
219 |
processed = apply_filters(image, brightness, contrast, hue)
|
220 |
-
final_image = superimpose_images(processed, overlay_image, alpha)
|
221 |
|
222 |
# Generate adversarial if enabled
|
223 |
if adversarial_switch:
|
@@ -241,13 +240,13 @@ def predict(image, brightness, contrast, hue, overlay_image, alpha, adversarial_
|
|
241 |
output = model(model_input)
|
242 |
probs = F.softmax(output, dim=1).cpu().numpy()[0]
|
243 |
|
244 |
-
# Generate Grad-CAM
|
245 |
heatmap, _ = gradcam.generate(model_input)
|
246 |
final_np = np.array(final_display)
|
247 |
heatmap = cv2.resize(heatmap, final_np.shape[:2][::-1])
|
248 |
heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET)
|
249 |
superimposed = cv2.addWeighted(cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB), 0.5, final_np, 0.5, 0)
|
250 |
-
|
251 |
# Create plot
|
252 |
fig, ax = plt.subplots(figsize=(6, 4))
|
253 |
top5_idx = np.argsort(probs)[-5:][::-1]
|
|
|
207 |
# return output
|
208 |
return output
|
209 |
|
|
|
210 |
def predict(image, brightness, contrast, hue, overlay_image, alpha, adversarial_switch):
|
211 |
"""Main prediction function"""
|
212 |
if image is None:
|
|
|
216 |
|
217 |
# Apply preprocessing
|
218 |
processed = apply_filters(image, brightness, contrast, hue)
|
219 |
+
final_image = superimpose_images(processed, overlay_image, alpha) # Overlay the image properly
|
220 |
|
221 |
# Generate adversarial if enabled
|
222 |
if adversarial_switch:
|
|
|
240 |
output = model(model_input)
|
241 |
probs = F.softmax(output, dim=1).cpu().numpy()[0]
|
242 |
|
243 |
+
# Generate Grad-CAM on the properly transformed image with overlay
|
244 |
heatmap, _ = gradcam.generate(model_input)
|
245 |
final_np = np.array(final_display)
|
246 |
heatmap = cv2.resize(heatmap, final_np.shape[:2][::-1])
|
247 |
heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET)
|
248 |
superimposed = cv2.addWeighted(cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB), 0.5, final_np, 0.5, 0)
|
249 |
+
|
250 |
# Create plot
|
251 |
fig, ax = plt.subplots(figsize=(6, 4))
|
252 |
top5_idx = np.argsort(probs)[-5:][::-1]
|