darpanaswal commited on
Commit
e9cde83
·
verified ·
1 Parent(s): c46b668

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -1
app.py CHANGED
@@ -91,6 +91,44 @@ def superimpose_images(base_image, overlay_image, alpha):
91
 
92
  return Image.fromarray(blended_array)
93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
  # Prediction function
95
  def predict(image, brightness, contrast, hue, overlay_image, alpha):
96
  """Apply filters, superimpose, classify image, and visualize results."""
@@ -110,6 +148,9 @@ def predict(image, brightness, contrast, hue, overlay_image, alpha):
110
  output = model(image_tensor)
111
  probabilities = F.softmax(output, dim=1).cpu().numpy()[0]
112
 
 
 
 
113
  # Generate Bar Chart
114
  with plt.xkcd():
115
  fig, ax = plt.subplots(figsize=(5, 3))
@@ -120,7 +161,7 @@ def predict(image, brightness, contrast, hue, overlay_image, alpha):
120
  for i, v in enumerate(probabilities):
121
  ax.text(i, v + 0.02, f"{v:.2f}", ha='center', fontsize=10)
122
 
123
- return final_image, fig
124
 
125
  # Gradio Interface
126
  with gr.Blocks() as interface:
@@ -137,6 +178,7 @@ with gr.Blocks() as interface:
137
 
138
  with gr.Column():
139
  processed_image = gr.Image(label="Final Processed Image")
 
140
  bar_chart = gr.Plot(label="Class Probabilities")
141
 
142
  inputs = [image_input, brightness, contrast, hue, overlay_input, alpha]
 
91
 
92
  return Image.fromarray(blended_array)
93
 
94
+ def compute_gradcam(image_tensor, model):
95
+ target_layer = model.layer4[-1]
96
+ gradients, activations = [], []
97
+
98
+ def backward_hook(module, grad_input, grad_output):
99
+ gradients.append(grad_output[0])
100
+
101
+ def forward_hook(module, input, output):
102
+ activations.append(output)
103
+
104
+ target_layer.register_forward_hook(forward_hook)
105
+ target_layer.register_backward_hook(backward_hook)
106
+
107
+ output = model(image_tensor)
108
+ class_idx = output.argmax(dim=1).item()
109
+ model.zero_grad()
110
+ output[:, class_idx].backward()
111
+
112
+ grads = gradients[0].cpu().data.numpy()[0]
113
+ acts = activations[0].cpu().data.numpy()[0]
114
+ weights = np.mean(grads, axis=(1, 2))
115
+ cam = np.zeros(acts.shape[1:], dtype=np.float32)
116
+
117
+ for i, w in enumerate(weights):
118
+ cam += w * acts[i]
119
+
120
+ cam = np.maximum(cam, 0)
121
+ cam = cv2.resize(cam, (224, 224))
122
+ cam = (cam - cam.min()) / (cam.max() - cam.min())
123
+ return cam
124
+
125
+ def overlay_heatmap(image, heatmap):
126
+ heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET)
127
+ heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
128
+ image = np.array(image.resize((224, 224)))
129
+ superimposed_img = cv2.addWeighted(image, 0.6, heatmap, 0.4, 0)
130
+ return Image.fromarray(superimposed_img)
131
+
132
  # Prediction function
133
  def predict(image, brightness, contrast, hue, overlay_image, alpha):
134
  """Apply filters, superimpose, classify image, and visualize results."""
 
148
  output = model(image_tensor)
149
  probabilities = F.softmax(output, dim=1).cpu().numpy()[0]
150
 
151
+ heatmap = compute_gradcam(image_tensor, model)
152
+ heatmap_image = overlay_heatmap(final_image, heatmap)
153
+
154
  # Generate Bar Chart
155
  with plt.xkcd():
156
  fig, ax = plt.subplots(figsize=(5, 3))
 
161
  for i, v in enumerate(probabilities):
162
  ax.text(i, v + 0.02, f"{v:.2f}", ha='center', fontsize=10)
163
 
164
+ return final_image, heatmap_image, fig
165
 
166
  # Gradio Interface
167
  with gr.Blocks() as interface:
 
178
 
179
  with gr.Column():
180
  processed_image = gr.Image(label="Final Processed Image")
181
+ heatmap_image = gr.Image(label="Heatmap Visualization")
182
  bar_chart = gr.Plot(label="Class Probabilities")
183
 
184
  inputs = [image_input, brightness, contrast, hue, overlay_input, alpha]