darpanaswal commited on
Commit
ff0f581
·
verified ·
1 Parent(s): 1f12a21

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -3
app.py CHANGED
@@ -211,6 +211,9 @@ def predict(image, brightness, contrast, hue, overlay_image, alpha, adversarial_
211
  # Apply preprocessing
212
  processed = apply_filters(image, brightness, contrast, hue)
213
  final_image = superimpose_images(processed, overlay_image, alpha)
 
 
 
214
 
215
  # Convert to tensor
216
  to_tensor = transforms.Compose([transforms.Resize(32), transforms.ToTensor()])
@@ -223,10 +226,10 @@ def predict(image, brightness, contrast, hue, overlay_image, alpha, adversarial_
223
  orig_pred = torch.argmax(orig_out).item()
224
  adv_tensor_01 = generate_adversarial(final_image, orig_pred)
225
  final_display = transforms.ToPILImage()(adv_tensor_01.squeeze().cpu().detach())
226
- model_input = transform_image(final_display)
227
  else:
228
  final_display = final_image
229
- model_input = transform_image(final_image)
230
 
231
  # Get predictions
232
  with torch.no_grad():
@@ -236,7 +239,7 @@ def predict(image, brightness, contrast, hue, overlay_image, alpha, adversarial_
236
  # Generate Grad-CAM
237
  heatmap, _ = gradcam.generate(model_input)
238
  final_np = np.array(final_display)
239
- heatmap = cv2.resize(heatmap, final_np.shape[:2][::-1])
240
  heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET)
241
  superimposed = cv2.addWeighted(cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB), 0.5, final_np, 0.5, 0)
242
 
 
211
  # Apply preprocessing
212
  processed = apply_filters(image, brightness, contrast, hue)
213
  final_image = superimpose_images(processed, overlay_image, alpha)
214
+
215
+ # Store the original size
216
+ original_size = final_image.size
217
 
218
  # Convert to tensor
219
  to_tensor = transforms.Compose([transforms.Resize(32), transforms.ToTensor()])
 
226
  orig_pred = torch.argmax(orig_out).item()
227
  adv_tensor_01 = generate_adversarial(final_image, orig_pred)
228
  final_display = transforms.ToPILImage()(adv_tensor_01.squeeze().cpu().detach())
229
+ # model_input = transform_image(final_display)
230
  else:
231
  final_display = final_image
232
+ # model_input = transform_image(final_image)
233
 
234
  # Get predictions
235
  with torch.no_grad():
 
239
  # Generate Grad-CAM
240
  heatmap, _ = gradcam.generate(model_input)
241
  final_np = np.array(final_display)
242
+ heatmap = cv2.resize(heatmap, (final_np.shape[1], final_np.shape[0]))
243
  heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET)
244
  superimposed = cv2.addWeighted(cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB), 0.5, final_np, 0.5, 0)
245