Spaces:
Runtime error
Runtime error
File size: 1,837 Bytes
3265841 02a05c8 3265841 7c962e7 3265841 c80a0ce 3265841 c80a0ce 7d04a4b 5930792 02a05c8 3710d07 02a05c8 4cb113c c80a0ce 02a05c8 c80a0ce 3265841 02a05c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import streamlit as st
import tempfile
import pandas as pd
from langchain import HuggingFacePipeline
from transformers import AutoTokenizer
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.document_loaders.csv_loader import CSVLoader
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
import transformers
import torch
import textwrap
def main():
st.set_page_config(page_title="Talk with BORROWER data")
st.title("Talk with BORROWER data")
query = st.text_input("Send a Message")
if st.button("Submit Query", type="primary"):
DB_FAISS_PATH = "vectorstore/db_faiss"
loader = CSVLoader(file_path="./borrower_data.csv", encoding="utf-8", csv_args={
'delimiter': ','})
data = loader.load()
model = "stabilityai/stablelm-zephyr-3b"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline("text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map="auto", do_sample=True, top_k=1, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id,offload_folder="offload")
llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': 0})
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')
vectorstore = FAISS.from_documents(data, embeddings,,allow_dangerous_deserialization=True)
vectorstore.save_local(DB_FAISS_PATH)
# Load the saved vectorstore
vectorstore = FAISS.load_local(DB_FAISS_PATH, embeddings)
chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", return_source_documents=True, retriever=vectorstore.as_retriever())
result = chain(query)
st.write(result['result'])
if __name__ == '__main__':
main() |