Spaces:
Sleeping
Sleeping
from flask import Flask, request, jsonify | |
from huggingface_hub import InferenceClient | |
client = InferenceClient( | |
"mistralai/Mistral-7B-Instruct-v0.1" | |
) | |
app = Flask(__name__) | |
file_path = "mentor.txt" | |
with open(file_path, "r") as file: | |
mentors_data = file.read() | |
def home(): | |
return jsonify({"message": "Welcome to the Recommendation API!"}) | |
def format_prompt(message): | |
prompt = "<s>" | |
prompt += f"[INST] {message} [/INST]" | |
prompt += "</s>" | |
return prompt | |
def recommend(): | |
temperature = 0.9 | |
max_new_tokens = 256 | |
top_p = 0.95 | |
repetition_penalty = 1.0 | |
if request.method == 'POST': | |
content = request.json | |
user_degree = content.get('degree') | |
user_stream = content.get('stream') | |
user_semester = content.get('semester') | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
prompt = f""" prompt: | |
You need to act like as recommendation engine for course recommendation for a student based on below details. | |
Degree: {user_degree} | |
Stream: {user_stream} | |
Current Semester: {user_semester} | |
Based on above details recommend the courses that relate to the above details | |
Note: Output should be valid json format in below format: | |
{{"course1:course_name, course2:course_name, course3:course_name,...}} | |
""" | |
formatted_prompt = format_prompt(prompt) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
return jsonify({"ans": output}) | |
else: | |
return jsonify({"error": "Invalid request method"}) | |
def mentor(): | |
temperature=0.9 | |
max_new_tokens=256 | |
top_p=0.95 | |
repetition_penalty=1.0 | |
content = request.json | |
user_degree = content.get('degree') | |
user_stream = content.get('stream') | |
user_semester = content.get('semester') | |
courses = content.get('courses') | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
prompt = f""" prompt: | |
You need to act like as recommendataion engine for mentor recommendation for student based on below details also the list of mentors with their experience is attached. | |
Degree: {user_degree} | |
Stream: {user_stream} | |
Current Semester: {user_semester} | |
courses opted:{courses} | |
Mentor list= {mentors_data} | |
Based on above details recommend the mentor that realtes to above details | |
Note: Output should be valid json format in below format: | |
{{"mentor1:mentor_name,mentor2:mentor_name,mentor3:mentor_name,...}} | |
""" | |
formatted_prompt = format_prompt(prompt) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
yield output | |
return jsonify({"ans":output}) | |
if __name__ == '__main__': | |
app.run(debug=True) |