Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
|
2 |
from flask import Flask, request, jsonify
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
llm = AutoModelForCausalLM.from_pretrained("TheBloke/Mistral-7B-v0.1-GGUF", model_file="mistral-7b-v0.1.Q4_K_M.gguf", model_type="mistral", gpu_layers=00)
|
9 |
|
10 |
app = Flask(__name__)
|
11 |
|
@@ -17,13 +17,33 @@ with open(file_path, "r") as file:
|
|
17 |
def home():
|
18 |
return jsonify({"message": "Welcome to the Recommendation API!"})
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
@app.route('/recommend', methods=['POST'])
|
21 |
-
def
|
22 |
content = request.json
|
23 |
user_degree = content.get('degree')
|
24 |
user_stream = content.get('stream')
|
25 |
user_semester = content.get('semester')
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
You need to act like as recommendataion engine for course recommendation for student based on below details.
|
28 |
|
29 |
Degree: {user_degree}
|
@@ -33,22 +53,39 @@ def recommendation():
|
|
33 |
|
34 |
Based on above details recommend the courses that realtes to above details
|
35 |
Note: Output should bevalid json format in below format:
|
36 |
-
{{"course1:
|
37 |
|
38 |
"""
|
39 |
-
|
40 |
-
prefix="[INST] <<SYS>> You are a helpful assistant <</SYS>>"
|
41 |
-
prompt = f"{prefix}{prompt}{suffix}"
|
42 |
-
return jsonify({"ans":llm(prompt)})
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
@app.route('/get_mentor', methods=['POST'])
|
46 |
-
def mentor():
|
47 |
content = request.json
|
48 |
user_degree = content.get('degree')
|
49 |
user_stream = content.get('stream')
|
50 |
user_semester = content.get('semester')
|
51 |
courses = content.get('courses')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
prompt = f""" prompt:
|
53 |
You need to act like as recommendataion engine for mentor recommendation for student based on below details also the list of mentors with their experience is attached.
|
54 |
|
@@ -60,12 +97,18 @@ def mentor():
|
|
60 |
Mentor list= {mentors_data}
|
61 |
Based on above details recommend the mentor that realtes to above details
|
62 |
Note: Output should be valid json format in below format:
|
63 |
-
{{"mentor1:
|
64 |
"""
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
if __name__ == '__main__':
|
71 |
app.run(debug=True)
|
|
|
1 |
|
2 |
from flask import Flask, request, jsonify
|
3 |
+
from huggingface_hub import InferenceClient
|
4 |
+
import gradio as gr
|
5 |
|
6 |
+
client = InferenceClient(
|
7 |
+
"mistralai/Mistral-7B-Instruct-v0.1"
|
8 |
+
)
|
|
|
|
|
9 |
|
10 |
app = Flask(__name__)
|
11 |
|
|
|
17 |
def home():
|
18 |
return jsonify({"message": "Welcome to the Recommendation API!"})
|
19 |
|
20 |
+
|
21 |
+
def format_prompt(message):
|
22 |
+
prompt = "<s>"
|
23 |
+
prompt += f"[INST] {message} [/INST]"
|
24 |
+
prompt += "</s>"
|
25 |
+
return prompt
|
26 |
+
|
27 |
@app.route('/recommend', methods=['POST'])
|
28 |
+
def recommend(temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,):
|
29 |
content = request.json
|
30 |
user_degree = content.get('degree')
|
31 |
user_stream = content.get('stream')
|
32 |
user_semester = content.get('semester')
|
33 |
+
temperature = float(temperature)
|
34 |
+
if temperature < 1e-2:
|
35 |
+
temperature = 1e-2
|
36 |
+
top_p = float(top_p)
|
37 |
+
|
38 |
+
generate_kwargs = dict(
|
39 |
+
temperature=temperature,
|
40 |
+
max_new_tokens=max_new_tokens,
|
41 |
+
top_p=top_p,
|
42 |
+
repetition_penalty=repetition_penalty,
|
43 |
+
do_sample=True,
|
44 |
+
seed=42,
|
45 |
+
)
|
46 |
+
prompt = f""" prompt:
|
47 |
You need to act like as recommendataion engine for course recommendation for student based on below details.
|
48 |
|
49 |
Degree: {user_degree}
|
|
|
53 |
|
54 |
Based on above details recommend the courses that realtes to above details
|
55 |
Note: Output should bevalid json format in below format:
|
56 |
+
{{"course1:course_name,course2:course_name,course3:course_name,...}}
|
57 |
|
58 |
"""
|
59 |
+
formatted_prompt = format_prompt(prompt)
|
|
|
|
|
|
|
60 |
|
61 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
62 |
+
output = ""
|
63 |
+
|
64 |
+
for response in stream:
|
65 |
+
output += response.token.text
|
66 |
+
yield output
|
67 |
+
return jsonify({"ans":output})
|
68 |
|
69 |
@app.route('/get_mentor', methods=['POST'])
|
70 |
+
def mentor(temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,):
|
71 |
content = request.json
|
72 |
user_degree = content.get('degree')
|
73 |
user_stream = content.get('stream')
|
74 |
user_semester = content.get('semester')
|
75 |
courses = content.get('courses')
|
76 |
+
temperature = float(temperature)
|
77 |
+
if temperature < 1e-2:
|
78 |
+
temperature = 1e-2
|
79 |
+
top_p = float(top_p)
|
80 |
+
|
81 |
+
generate_kwargs = dict(
|
82 |
+
temperature=temperature,
|
83 |
+
max_new_tokens=max_new_tokens,
|
84 |
+
top_p=top_p,
|
85 |
+
repetition_penalty=repetition_penalty,
|
86 |
+
do_sample=True,
|
87 |
+
seed=42,
|
88 |
+
)
|
89 |
prompt = f""" prompt:
|
90 |
You need to act like as recommendataion engine for mentor recommendation for student based on below details also the list of mentors with their experience is attached.
|
91 |
|
|
|
97 |
Mentor list= {mentors_data}
|
98 |
Based on above details recommend the mentor that realtes to above details
|
99 |
Note: Output should be valid json format in below format:
|
100 |
+
{{"mentor1:mentor_name,mentor2:mentor_name,mentor3:mentor_name,...}}
|
101 |
"""
|
102 |
+
formatted_prompt = format_prompt(prompt)
|
103 |
+
|
104 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
105 |
+
output = ""
|
106 |
+
|
107 |
+
for response in stream:
|
108 |
+
output += response.token.text
|
109 |
+
yield output
|
110 |
+
return jsonify({"ans":output})
|
111 |
+
|
112 |
|
113 |
if __name__ == '__main__':
|
114 |
app.run(debug=True)
|