Spaces:
Sleeping
Sleeping
Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
from flask import Flask, request, jsonify
|
3 |
+
|
4 |
+
device = "cuda" # the device to load the model onto
|
5 |
+
|
6 |
+
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
@app.route('/recommend', methods=['POST'])
|
12 |
+
def recommendation():
|
13 |
+
content = request.json
|
14 |
+
user_degree = content.get('degree')
|
15 |
+
user_stream = content.get('stream')
|
16 |
+
user_semester = content.get('semester')
|
17 |
+
messages = [
|
18 |
+
{"role": "user", "content": f"""
|
19 |
+
You need to act like as recommendataion engine for course recommendation based on below details.
|
20 |
+
|
21 |
+
Degree: {user_degree}
|
22 |
+
Stream: {user_stream}
|
23 |
+
Current Semester: {user_semester}
|
24 |
+
|
25 |
+
|
26 |
+
Based on above details recommend the courses that realtes to above details
|
27 |
+
Note: Output should bevalid json format in below format:
|
28 |
+
{{"course1:ABC,course2:DEF,course3:XYZ,...}}
|
29 |
+
|
30 |
+
"""},
|
31 |
+
|
32 |
+
]
|
33 |
+
|
34 |
+
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
35 |
+
|
36 |
+
model_inputs = encodeds.to(device)
|
37 |
+
model.to(device)
|
38 |
+
|
39 |
+
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
|
40 |
+
decoded = tokenizer.batch_decode(generated_ids)
|
41 |
+
return jsonify({"res":decoded[0]})
|
42 |
+
|
43 |
+
if __name__ == '__main__':
|
44 |
+
app.run(debug=True)
|