File size: 1,103 Bytes
8a2b261
 
 
 
b37e35e
8a2b261
 
b21b6cd
2ece00e
8a2b261
 
 
 
 
 
 
b21b6cd
8a2b261
 
 
 
 
b37e35e
8a2b261
 
 
 
 
b37e35e
8a2b261
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import gradio as gr
import torch
from PIL import Image
from lavis.models import load_model_and_preprocess


# Load the Blip-Caption model

model, vis_processors, _ = load_model_and_preprocess(name="blip_caption", model_type="base_coco", is_eval=True)

# Define the input and output functions for Gradio
def generate_caption(image_file):
        # Load the image from the file path
        raw_image = Image.open(image_file).convert("RGB")

        # Preprocess the image using the Blip-Caption model's visual processors
        image = vis_processors["eval"](raw_image).unsqueeze(0)

        # Generate captions using the Blip-Caption model
        captions = model.generate({"image": image}, use_nucleus_sampling=True, num_captions=5)
        res=" "
        for i in captions:
          res=res+",     "+i
        return (res)

# Set up the Gradio interface
inputs = gr.inputs.Image(type="pil",label="Image")
outputs = gr.Textbox(label="Captions")
interface = gr.Interface(fn=generate_caption, inputs=inputs, outputs=outputs, title="Blip-Caption")

# Launch the interface
interface.launch(share=True)