import gradio as gr import torch from PIL import Image from lavis.models import load_model_and_preprocess import json # Load the Blip-Caption model device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model, vis_processors, _ = load_model_and_preprocess(name="blip_caption", model_type="base_coco", is_eval=True, device=device) # Define the input and output functions for Gradio def generate_caption(image_file): # Load the image from the file path raw_image = Image.open(image_file).convert("RGB") # Preprocess the image using the Blip-Caption model's visual processors image = vis_processors["eval"](raw_image).unsqueeze(0).to(device) # Generate captions using the Blip-Caption model captions = model.generate({"image": image}, use_nucleus_sampling=True, num_captions=5) res=" " for i in captions: res=res+", "+i return (res) # Set up the Gradio interface inputs = gr.inputs.Image(type="pil",label="Image") outputs = gr.Textbox(label="Captions") interface = gr.Interface(fn=generate_caption, inputs=inputs, outputs="text", title="Blip-Caption") # Launch the interface interface.launch(share=True)