Spaces:
Runtime error
Runtime error
Darshan
commited on
Commit
·
a853668
1
Parent(s):
02fa6ef
add api
Browse files- Dockerfile +29 -0
- app.py +53 -0
- requirements.txt +4 -0
Dockerfile
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use a lightweight Python image
|
2 |
+
FROM python:3.9-slim
|
3 |
+
|
4 |
+
# Install system dependencies
|
5 |
+
RUN apt-get update && apt-get install -y \
|
6 |
+
git ffmpeg wget && \
|
7 |
+
rm -rf /var/lib/apt/lists/*
|
8 |
+
|
9 |
+
# Set working directory
|
10 |
+
WORKDIR /app
|
11 |
+
|
12 |
+
# Copy requirements and install dependencies
|
13 |
+
COPY requirements.txt .
|
14 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
15 |
+
|
16 |
+
# Clone NeMo from the specific branch and install it
|
17 |
+
RUN git clone https://github.com/AI4Bharat/NeMo.git && \
|
18 |
+
cd NeMo && \
|
19 |
+
git checkout nemo-v2 && \
|
20 |
+
bash reinstall.sh
|
21 |
+
|
22 |
+
# Copy all code to the working directory
|
23 |
+
COPY . .
|
24 |
+
|
25 |
+
# Expose the required port
|
26 |
+
EXPOSE 7860
|
27 |
+
|
28 |
+
# Run the FastAPI app with Uvicorn
|
29 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
2 |
+
import nemo.collections.asr as nemo_asr
|
3 |
+
import torch
|
4 |
+
import shutil
|
5 |
+
import os
|
6 |
+
import uvicorn
|
7 |
+
|
8 |
+
app = FastAPI()
|
9 |
+
|
10 |
+
# Set the device (CPU or CUDA if available)
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
|
13 |
+
# Load and configure the ASR model
|
14 |
+
model = nemo_asr.models.ASRModel.from_pretrained(
|
15 |
+
"ai4bharat/indicconformer_stt_hi_hybrid_rnnt_large"
|
16 |
+
)
|
17 |
+
model.freeze() # Set to inference mode
|
18 |
+
model = model.to(device)
|
19 |
+
model.cur_decoder = "rnnt" # Use RNNT decoder
|
20 |
+
|
21 |
+
UPLOAD_FOLDER = "./uploads"
|
22 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True) # Create upload folder if it doesn't exist
|
23 |
+
|
24 |
+
|
25 |
+
@app.post("/transcribe/")
|
26 |
+
async def transcribe_audio(file: UploadFile = File(...), source_lang: str = "hi"):
|
27 |
+
try:
|
28 |
+
# Save the uploaded audio file to disk
|
29 |
+
file_path = os.path.join(UPLOAD_FOLDER, file.filename)
|
30 |
+
with open(file_path, "wb") as buffer:
|
31 |
+
shutil.copyfileobj(file.file, buffer)
|
32 |
+
|
33 |
+
# Perform transcription using the provided language ID
|
34 |
+
transcription = model.transcribe(
|
35 |
+
[file_path], batch_size=1, language_id=source_lang
|
36 |
+
)[0]
|
37 |
+
|
38 |
+
# Cleanup the uploaded file
|
39 |
+
os.remove(file_path)
|
40 |
+
|
41 |
+
return {"transcription": transcription}
|
42 |
+
|
43 |
+
except Exception as e:
|
44 |
+
raise HTTPException(
|
45 |
+
status_code=500, detail=f"Error during transcription: {str(e)}"
|
46 |
+
)
|
47 |
+
|
48 |
+
|
49 |
+
# Run the app if inside a container
|
50 |
+
if __name__ == "__main__":
|
51 |
+
import uvicorn
|
52 |
+
|
53 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
torch
|
4 |
+
ffmpeg-python
|