Spaces:
Sleeping
Sleeping
Darshan
commited on
Commit
·
ad152ab
1
Parent(s):
bae6852
use different app for testing
Browse files- Dockerfile +3 -3
- app.py +16 -23
Dockerfile
CHANGED
@@ -2,10 +2,10 @@
|
|
2 |
FROM python:3.10.9
|
3 |
|
4 |
# Copy the current directory contents into the container at .
|
5 |
-
COPY
|
6 |
|
7 |
# Set the working directory to /
|
8 |
-
WORKDIR /
|
9 |
|
10 |
EXPOSE 7860
|
11 |
|
@@ -13,4 +13,4 @@ EXPOSE 7860
|
|
13 |
RUN pip install --no-cache-dir --upgrade -r /requirements.txt
|
14 |
|
15 |
# Start the FastAPI app on port 7860, the default port expected by Spaces
|
16 |
-
CMD ["uvicorn", "app
|
|
|
2 |
FROM python:3.10.9
|
3 |
|
4 |
# Copy the current directory contents into the container at .
|
5 |
+
COPY . .
|
6 |
|
7 |
# Set the working directory to /
|
8 |
+
WORKDIR /
|
9 |
|
10 |
EXPOSE 7860
|
11 |
|
|
|
13 |
RUN pip install --no-cache-dir --upgrade -r /requirements.txt
|
14 |
|
15 |
# Start the FastAPI app on port 7860, the default port expected by Spaces
|
16 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
CHANGED
@@ -1,17 +1,12 @@
|
|
1 |
-
from fastapi import FastAPI
|
2 |
from typing import List
|
3 |
-
import
|
4 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
5 |
from IndicTransToolkit import IndicProcessor
|
6 |
from fastapi.middleware.cors import CORSMiddleware
|
7 |
|
8 |
-
import os
|
9 |
-
|
10 |
-
os.environ["HF_HOME"] = "/.cache"
|
11 |
-
# Initialize FastAPI
|
12 |
app = FastAPI()
|
13 |
|
14 |
-
# Add CORS middleware
|
15 |
app.add_middleware(
|
16 |
CORSMiddleware,
|
17 |
allow_origins=["*"],
|
@@ -20,13 +15,13 @@ app.add_middleware(
|
|
20 |
allow_headers=["*"],
|
21 |
)
|
22 |
|
23 |
-
# Initialize models and processors
|
24 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
25 |
"ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True
|
26 |
)
|
27 |
tokenizer = AutoTokenizer.from_pretrained(
|
28 |
"ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True
|
29 |
)
|
|
|
30 |
ip = IndicProcessor(inference=True)
|
31 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
model = model.to(DEVICE)
|
@@ -58,29 +53,27 @@ def translate_text(sentences: List[str], target_lang: str):
|
|
58 |
generated_tokens = tokenizer.batch_decode(
|
59 |
generated_tokens.detach().cpu().tolist(),
|
60 |
skip_special_tokens=True,
|
61 |
-
clean_up_tokenization_spaces=True,
|
62 |
)
|
63 |
|
64 |
-
|
65 |
-
return {
|
66 |
-
"translations": translations,
|
67 |
-
"source_language": src_lang,
|
68 |
-
"target_language": target_lang,
|
69 |
-
}
|
70 |
except Exception as e:
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
return {"status": "healthy"}
|
78 |
|
79 |
|
80 |
-
@app.post("/translate")
|
81 |
-
|
82 |
try:
|
83 |
-
result = translate_text(sentences
|
84 |
return result
|
85 |
except Exception as e:
|
86 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
from typing import List
|
3 |
+
from pydantic import BaseModel
|
4 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
5 |
from IndicTransToolkit import IndicProcessor
|
6 |
from fastapi.middleware.cors import CORSMiddleware
|
7 |
|
|
|
|
|
|
|
|
|
8 |
app = FastAPI()
|
9 |
|
|
|
10 |
app.add_middleware(
|
11 |
CORSMiddleware,
|
12 |
allow_origins=["*"],
|
|
|
15 |
allow_headers=["*"],
|
16 |
)
|
17 |
|
|
|
18 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
19 |
"ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True
|
20 |
)
|
21 |
tokenizer = AutoTokenizer.from_pretrained(
|
22 |
"ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True
|
23 |
)
|
24 |
+
|
25 |
ip = IndicProcessor(inference=True)
|
26 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
model = model.to(DEVICE)
|
|
|
53 |
generated_tokens = tokenizer.batch_decode(
|
54 |
generated_tokens.detach().cpu().tolist(),
|
55 |
skip_special_tokens=True,
|
|
|
56 |
)
|
57 |
|
58 |
+
return generated_tokens
|
|
|
|
|
|
|
|
|
|
|
59 |
except Exception as e:
|
60 |
+
return str(e)
|
61 |
+
|
62 |
+
|
63 |
+
@app.get("/")
|
64 |
+
def read_root():
|
65 |
+
return {"Hello": "World"}
|
66 |
|
67 |
|
68 |
+
class TranslateRequest(BaseModel):
|
69 |
+
sentences: List[str]
|
70 |
+
target_lang: str
|
|
|
71 |
|
72 |
|
73 |
+
@app.post("/translate/")
|
74 |
+
def translate(request: TranslateRequest):
|
75 |
try:
|
76 |
+
result = translate_text(request.sentences, request.target_lang)
|
77 |
return result
|
78 |
except Exception as e:
|
79 |
raise HTTPException(status_code=500, detail=str(e))
|