indic-trans / app.py
darshankr's picture
Create app.py
cafe5d4 verified
raw
history blame
628 Bytes
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import pipeline
# Initialize FastAPI and load your Hugging Face model
app = FastAPI()
model = pipeline("text-classification", model="your-username/your-model-name")
# Define request body with Pydantic
class InputData(BaseModel):
text: str
# API endpoint to receive input and return predictions
@app.post("/predict/")
async def predict(input_data: InputData):
try:
result = model(input_data.text)
return {"output": result}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))