Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,64 @@
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
-
from
|
3 |
-
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
# Initialize FastAPI and load your Hugging Face model
|
6 |
app = FastAPI()
|
7 |
-
model = pipeline("text-classification", model="your-username/your-model-name")
|
8 |
|
9 |
# Define request body with Pydantic
|
10 |
class InputData(BaseModel):
|
11 |
-
|
|
|
12 |
|
13 |
# API endpoint to receive input and return predictions
|
14 |
-
@app.post("/
|
15 |
async def predict(input_data: InputData):
|
16 |
try:
|
17 |
result = model(input_data.text)
|
18 |
return {"output": result}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
except Exception as e:
|
20 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
+
from transformers
|
3 |
+
import AutoModelForSeq2SeqLM
|
4 |
+
from IndicTransToolkit import IndicProcessor
|
5 |
+
|
6 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True)
|
7 |
+
ip = IndicProcessor(inference=True)
|
8 |
|
|
|
9 |
app = FastAPI()
|
|
|
10 |
|
11 |
# Define request body with Pydantic
|
12 |
class InputData(BaseModel):
|
13 |
+
sentences: str[]
|
14 |
+
target_lang: str
|
15 |
|
16 |
# API endpoint to receive input and return predictions
|
17 |
+
@app.post("/translate/")
|
18 |
async def predict(input_data: InputData):
|
19 |
try:
|
20 |
result = model(input_data.text)
|
21 |
return {"output": result}
|
22 |
+
src_lang, tgt_lang = "eng_Latn", input_data.target_lang
|
23 |
+
|
24 |
+
batch = ip.preprocess_batch(
|
25 |
+
input_sentences,
|
26 |
+
src_lang=src_lang,
|
27 |
+
tgt_lang=tgt_lang,
|
28 |
+
)
|
29 |
+
|
30 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
+
|
32 |
+
# Tokenize the sentences and generate input encodings
|
33 |
+
inputs = tokenizer(
|
34 |
+
batch,
|
35 |
+
truncation=True,
|
36 |
+
padding="longest",
|
37 |
+
return_tensors="pt",
|
38 |
+
return_attention_mask=True,
|
39 |
+
).to(DEVICE)
|
40 |
+
|
41 |
+
# Generate translations using the model
|
42 |
+
with torch.no_grad():
|
43 |
+
generated_tokens = model.generate(
|
44 |
+
**inputs,
|
45 |
+
use_cache=True,
|
46 |
+
min_length=0,
|
47 |
+
max_length=256,
|
48 |
+
num_beams=5,
|
49 |
+
num_return_sequences=1,
|
50 |
+
)
|
51 |
+
|
52 |
+
# Decode the generated tokens into text
|
53 |
+
with tokenizer.as_target_tokenizer():
|
54 |
+
generated_tokens = tokenizer.batch_decode(
|
55 |
+
generated_tokens.detach().cpu().tolist(),
|
56 |
+
skip_special_tokens=True,
|
57 |
+
clean_up_tokenization_spaces=True,
|
58 |
+
)
|
59 |
+
|
60 |
+
# Postprocess the translations, including entity replacement
|
61 |
+
translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang)
|
62 |
+
return {"output": translations}
|
63 |
except Exception as e:
|
64 |
raise HTTPException(status_code=500, detail=str(e))
|