Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,52 +1,37 @@
|
|
1 |
# app.py
|
2 |
import streamlit as st
|
3 |
-
from fastapi import FastAPI, HTTPException, Request
|
4 |
-
from fastapi.responses import JSONResponse
|
5 |
-
from pydantic import BaseModel
|
6 |
-
from typing import List
|
7 |
import torch
|
8 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
9 |
from IndicTransToolkit import IndicProcessor
|
10 |
-
import
|
11 |
-
|
12 |
-
import uvicorn
|
13 |
from starlette.applications import Starlette
|
14 |
-
from starlette.routing import Mount
|
15 |
from starlette.staticfiles import StaticFiles
|
16 |
-
import asyncio
|
17 |
import nest_asyncio
|
|
|
18 |
|
19 |
# Enable nested event loops
|
20 |
nest_asyncio.apply()
|
21 |
|
22 |
-
# Initialize
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
)
|
33 |
-
|
34 |
-
|
35 |
-
model =
|
36 |
-
|
37 |
-
trust_remote_code=True
|
38 |
-
)
|
39 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
40 |
-
"ai4bharat/indictrans2-en-indic-1B",
|
41 |
-
trust_remote_code=True
|
42 |
-
)
|
43 |
-
ip = IndicProcessor(inference=True)
|
44 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
45 |
-
model = model.to(DEVICE)
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
target_lang: str
|
50 |
|
51 |
def translate_text(sentences: List[str], target_lang: str):
|
52 |
try:
|
@@ -90,23 +75,6 @@ def translate_text(sentences: List[str], target_lang: str):
|
|
90 |
except Exception as e:
|
91 |
raise Exception(f"Translation failed: {str(e)}")
|
92 |
|
93 |
-
# FastAPI routes
|
94 |
-
@app.get("/api/health")
|
95 |
-
async def health_check():
|
96 |
-
return {"status": "healthy"}
|
97 |
-
|
98 |
-
@app.post("/api/translate")
|
99 |
-
async def translate_endpoint(request: TranslationRequest):
|
100 |
-
try:
|
101 |
-
result = translate_text(
|
102 |
-
sentences=request.sentences,
|
103 |
-
target_lang=request.target_lang
|
104 |
-
)
|
105 |
-
return JSONResponse(content=result)
|
106 |
-
except Exception as e:
|
107 |
-
raise HTTPException(status_code=500, detail=str(e))
|
108 |
-
|
109 |
-
# Streamlit interface
|
110 |
def streamlit_app():
|
111 |
st.title("Indic Language Translator")
|
112 |
|
@@ -149,7 +117,7 @@ def streamlit_app():
|
|
149 |
st.markdown("""
|
150 |
To use the translation API, send POST requests to:
|
151 |
```
|
152 |
-
https://
|
153 |
```
|
154 |
Request body format:
|
155 |
```json
|
@@ -163,7 +131,6 @@ def streamlit_app():
|
|
163 |
for lang, code in target_languages.items():
|
164 |
st.markdown(f"- {lang}: `{code}`")
|
165 |
|
166 |
-
# Create a unified application
|
167 |
def create_app():
|
168 |
routes = [
|
169 |
Mount("/api", app),
|
@@ -175,4 +142,5 @@ if __name__ == "__main__":
|
|
175 |
if "streamlit" in sys.argv[0]:
|
176 |
streamlit_app()
|
177 |
else:
|
|
|
178 |
uvicorn.run(create_app(), host="0.0.0.0", port=7860)
|
|
|
1 |
# app.py
|
2 |
import streamlit as st
|
|
|
|
|
|
|
|
|
3 |
import torch
|
4 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
5 |
from IndicTransToolkit import IndicProcessor
|
6 |
+
from typing import List
|
7 |
+
import sys
|
|
|
8 |
from starlette.applications import Starlette
|
9 |
+
from starlette.routing import Mount
|
10 |
from starlette.staticfiles import StaticFiles
|
|
|
11 |
import nest_asyncio
|
12 |
+
from api import app
|
13 |
|
14 |
# Enable nested event loops
|
15 |
nest_asyncio.apply()
|
16 |
|
17 |
+
# Initialize models and processors (lazy loading)
|
18 |
+
@st.cache_resource
|
19 |
+
def load_models():
|
20 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
21 |
+
"ai4bharat/indictrans2-en-indic-1B",
|
22 |
+
trust_remote_code=True
|
23 |
+
)
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
25 |
+
"ai4bharat/indictrans2-en-indic-1B",
|
26 |
+
trust_remote_code=True
|
27 |
+
)
|
28 |
+
ip = IndicProcessor(inference=True)
|
29 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
30 |
+
model = model.to(DEVICE)
|
31 |
+
return model, tokenizer, ip, DEVICE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
# Global variables for models
|
34 |
+
model, tokenizer, ip, DEVICE = load_models()
|
|
|
35 |
|
36 |
def translate_text(sentences: List[str], target_lang: str):
|
37 |
try:
|
|
|
75 |
except Exception as e:
|
76 |
raise Exception(f"Translation failed: {str(e)}")
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
def streamlit_app():
|
79 |
st.title("Indic Language Translator")
|
80 |
|
|
|
117 |
st.markdown("""
|
118 |
To use the translation API, send POST requests to:
|
119 |
```
|
120 |
+
https://YOUR-SPACE-NAME.hf.space/api/translate
|
121 |
```
|
122 |
Request body format:
|
123 |
```json
|
|
|
131 |
for lang, code in target_languages.items():
|
132 |
st.markdown(f"- {lang}: `{code}`")
|
133 |
|
|
|
134 |
def create_app():
|
135 |
routes = [
|
136 |
Mount("/api", app),
|
|
|
142 |
if "streamlit" in sys.argv[0]:
|
143 |
streamlit_app()
|
144 |
else:
|
145 |
+
import uvicorn
|
146 |
uvicorn.run(create_app(), host="0.0.0.0", port=7860)
|