Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,84 +1,52 @@
|
|
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
from typing import List
|
4 |
import torch
|
5 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
6 |
from IndicTransToolkit import IndicProcessor
|
|
|
|
|
|
|
7 |
|
8 |
-
# Initialize FastAPI
|
9 |
-
app = FastAPI(
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
)
|
|
|
|
|
|
|
14 |
|
15 |
-
# Define request body model
|
16 |
class InputData(BaseModel):
|
17 |
sentences: List[str]
|
18 |
target_lang: str
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
"target_lang": "hin_Deva"
|
25 |
-
}
|
26 |
-
}
|
27 |
-
|
28 |
-
# Initialize models and processors
|
29 |
-
try:
|
30 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(
|
31 |
-
"ai4bharat/indictrans2-en-indic-1B",
|
32 |
-
trust_remote_code=True
|
33 |
-
)
|
34 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
35 |
-
"ai4bharat/indictrans2-en-indic-1B",
|
36 |
-
trust_remote_code=True
|
37 |
-
)
|
38 |
-
ip = IndicProcessor(inference=True)
|
39 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
40 |
-
model = model.to(DEVICE)
|
41 |
-
except Exception as e:
|
42 |
-
raise RuntimeError(f"Failed to load models: {str(e)}")
|
43 |
-
|
44 |
-
@app.get("/")
|
45 |
-
async def root():
|
46 |
-
"""Root endpoint returning API information"""
|
47 |
-
return {
|
48 |
-
"message": "Welcome to the Indic Translation API",
|
49 |
-
"status": "active",
|
50 |
-
"supported_languages": [
|
51 |
-
"hin_Deva", # Hindi
|
52 |
-
"ben_Beng", # Bengali
|
53 |
-
"tam_Taml", # Tamil
|
54 |
-
# Add other supported languages here
|
55 |
-
]
|
56 |
-
}
|
57 |
|
58 |
@app.post("/translate/")
|
59 |
async def translate(input_data: InputData):
|
60 |
-
"""
|
61 |
-
Translate text from English to specified Indic language
|
62 |
-
|
63 |
-
Args:
|
64 |
-
input_data: InputData object containing sentences and target language
|
65 |
-
|
66 |
-
Returns:
|
67 |
-
Dictionary containing translated text
|
68 |
-
"""
|
69 |
try:
|
70 |
-
# Source language is always English
|
71 |
src_lang = "eng_Latn"
|
72 |
tgt_lang = input_data.target_lang
|
73 |
-
|
74 |
-
# Preprocess the input sentences
|
75 |
batch = ip.preprocess_batch(
|
76 |
input_data.sentences,
|
77 |
src_lang=src_lang,
|
78 |
tgt_lang=tgt_lang
|
79 |
)
|
80 |
-
|
81 |
-
# Tokenize the sentences
|
82 |
inputs = tokenizer(
|
83 |
batch,
|
84 |
truncation=True,
|
@@ -86,8 +54,7 @@ async def translate(input_data: InputData):
|
|
86 |
return_tensors="pt",
|
87 |
return_attention_mask=True
|
88 |
).to(DEVICE)
|
89 |
-
|
90 |
-
# Generate translations
|
91 |
with torch.no_grad():
|
92 |
generated_tokens = model.generate(
|
93 |
**inputs,
|
@@ -97,32 +64,77 @@ async def translate(input_data: InputData):
|
|
97 |
num_beams=5,
|
98 |
num_return_sequences=1
|
99 |
)
|
100 |
-
|
101 |
-
# Decode the generated tokens
|
102 |
with tokenizer.as_target_tokenizer():
|
103 |
generated_tokens = tokenizer.batch_decode(
|
104 |
generated_tokens.detach().cpu().tolist(),
|
105 |
skip_special_tokens=True,
|
106 |
clean_up_tokenization_spaces=True
|
107 |
)
|
108 |
-
|
109 |
-
# Postprocess the translations
|
110 |
translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang)
|
111 |
-
|
112 |
return {
|
113 |
"translations": translations,
|
114 |
"source_language": src_lang,
|
115 |
"target_language": tgt_lang
|
116 |
}
|
117 |
-
|
118 |
except Exception as e:
|
119 |
-
raise HTTPException(
|
120 |
-
status_code=500,
|
121 |
-
detail=f"Translation error: {str(e)}"
|
122 |
-
)
|
123 |
|
124 |
-
#
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import streamlit as st
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
from pydantic import BaseModel
|
5 |
from typing import List
|
6 |
import torch
|
7 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
8 |
from IndicTransToolkit import IndicProcessor
|
9 |
+
import uvicorn
|
10 |
+
import nest_asyncio
|
11 |
+
import threading
|
12 |
|
13 |
+
# Initialize FastAPI
|
14 |
+
app = FastAPI()
|
15 |
+
|
16 |
+
# Initialize models and processors
|
17 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
18 |
+
"ai4bharat/indictrans2-en-indic-1B",
|
19 |
+
trust_remote_code=True
|
20 |
+
)
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
22 |
+
"ai4bharat/indictrans2-en-indic-1B",
|
23 |
+
trust_remote_code=True
|
24 |
)
|
25 |
+
ip = IndicProcessor(inference=True)
|
26 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
+
model = model.to(DEVICE)
|
28 |
|
|
|
29 |
class InputData(BaseModel):
|
30 |
sentences: List[str]
|
31 |
target_lang: str
|
32 |
|
33 |
+
# FastAPI endpoints
|
34 |
+
@app.get("/health")
|
35 |
+
async def health_check():
|
36 |
+
return {"status": "healthy"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
@app.post("/translate/")
|
39 |
async def translate(input_data: InputData):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
try:
|
|
|
41 |
src_lang = "eng_Latn"
|
42 |
tgt_lang = input_data.target_lang
|
43 |
+
|
|
|
44 |
batch = ip.preprocess_batch(
|
45 |
input_data.sentences,
|
46 |
src_lang=src_lang,
|
47 |
tgt_lang=tgt_lang
|
48 |
)
|
49 |
+
|
|
|
50 |
inputs = tokenizer(
|
51 |
batch,
|
52 |
truncation=True,
|
|
|
54 |
return_tensors="pt",
|
55 |
return_attention_mask=True
|
56 |
).to(DEVICE)
|
57 |
+
|
|
|
58 |
with torch.no_grad():
|
59 |
generated_tokens = model.generate(
|
60 |
**inputs,
|
|
|
64 |
num_beams=5,
|
65 |
num_return_sequences=1
|
66 |
)
|
67 |
+
|
|
|
68 |
with tokenizer.as_target_tokenizer():
|
69 |
generated_tokens = tokenizer.batch_decode(
|
70 |
generated_tokens.detach().cpu().tolist(),
|
71 |
skip_special_tokens=True,
|
72 |
clean_up_tokenization_spaces=True
|
73 |
)
|
74 |
+
|
|
|
75 |
translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang)
|
76 |
+
|
77 |
return {
|
78 |
"translations": translations,
|
79 |
"source_language": src_lang,
|
80 |
"target_language": tgt_lang
|
81 |
}
|
82 |
+
|
83 |
except Exception as e:
|
84 |
+
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
85 |
|
86 |
+
# Streamlit interface
|
87 |
+
def main():
|
88 |
+
st.title("Indic Language Translator")
|
89 |
+
|
90 |
+
# Input text
|
91 |
+
text_input = st.text_area("Enter text to translate:", "Hello, how are you?")
|
92 |
+
|
93 |
+
# Language selection
|
94 |
+
target_languages = {
|
95 |
+
"Hindi": "hin_Deva",
|
96 |
+
"Bengali": "ben_Beng",
|
97 |
+
"Tamil": "tam_Taml",
|
98 |
+
"Telugu": "tel_Telu",
|
99 |
+
"Marathi": "mar_Deva",
|
100 |
+
"Gujarati": "guj_Gujr",
|
101 |
+
"Kannada": "kan_Knda",
|
102 |
+
"Malayalam": "mal_Mlym",
|
103 |
+
"Punjabi": "pan_Guru",
|
104 |
+
"Odia": "ori_Orya"
|
105 |
+
}
|
106 |
+
|
107 |
+
target_lang = st.selectbox(
|
108 |
+
"Select target language:",
|
109 |
+
options=list(target_languages.keys())
|
110 |
+
)
|
111 |
+
|
112 |
+
if st.button("Translate"):
|
113 |
+
try:
|
114 |
+
# Prepare input data
|
115 |
+
input_data = InputData(
|
116 |
+
sentences=[text_input],
|
117 |
+
target_lang=target_languages[target_lang]
|
118 |
+
)
|
119 |
+
|
120 |
+
# Call translation function directly
|
121 |
+
result = translate(input_data)
|
122 |
+
|
123 |
+
# Display result
|
124 |
+
st.success("Translation:")
|
125 |
+
st.write(result["translations"][0])
|
126 |
+
|
127 |
+
except Exception as e:
|
128 |
+
st.error(f"Translation failed: {str(e)}")
|
129 |
+
|
130 |
+
def run_fastapi():
|
131 |
+
nest_asyncio.apply()
|
132 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
133 |
+
|
134 |
+
if __name__ == "__main__":
|
135 |
+
# Start FastAPI in a separate thread
|
136 |
+
api_thread = threading.Thread(target=run_fastapi, daemon=True)
|
137 |
+
api_thread.start()
|
138 |
+
|
139 |
+
# Run Streamlit interface
|
140 |
+
main()
|