salesorder_v2 / app.py
freddyaboulton's picture
Add code
b2e5de5
raw
history blame
6.55 kB
from __future__ import annotations as _annotations
import json
import os
from dataclasses import dataclass
from typing import Any
import gradio as gr
from httpx import AsyncClient
from groq import Groq
import numpy as np
from gradio_webrtc import WebRTC, AdditionalOutputs, ReplyOnPause, audio_to_bytes
from pydantic_ai import Agent, ModelRetry, RunContext
from pydantic_ai.messages import ModelStructuredResponse, ToolReturn, ModelTextResponse
from dotenv import load_dotenv
load_dotenv()
@dataclass
class Deps:
client: AsyncClient
weather_api_key: str | None
geo_api_key: str | None
weather_agent = Agent(
'openai:gpt-4o',
system_prompt='You are an expert packer. A user will ask you for help packing for a trip given a destination. Use your weather tools to provide a concise and effective packing list. Also ask follow up questions if neccessary.',
deps_type=Deps,
retries=2,
)
@weather_agent.tool
async def get_lat_lng(
ctx: RunContext[Deps], location_description: str
) -> dict[str, float]:
"""Get the latitude and longitude of a location.
Args:
ctx: The context.
location_description: A description of a location.
"""
if ctx.deps.geo_api_key is None:
# if no API key is provided, return a dummy response (London)
return {'lat': 51.1, 'lng': -0.1}
params = {
'q': location_description,
'api_key': ctx.deps.geo_api_key,
}
r = await ctx.deps.client.get('https://geocode.maps.co/search', params=params)
r.raise_for_status()
data = r.json()
if data:
return {'lat': data[0]['lat'], 'lng': data[0]['lon']}
else:
raise ModelRetry('Could not find the location')
@weather_agent.tool
async def get_weather(ctx: RunContext[Deps], lat: float, lng: float) -> dict[str, Any]:
"""Get the weather at a location.
Args:
ctx: The context.
lat: Latitude of the location.
lng: Longitude of the location.
"""
if ctx.deps.weather_api_key is None:
# if no API key is provided, return a dummy response
return {'temperature': '21 °C', 'description': 'Sunny'}
params = {
'apikey': ctx.deps.weather_api_key,
'location': f'{lat},{lng}',
'units': 'metric',
}
r = await ctx.deps.client.get(
'https://api.tomorrow.io/v4/weather/realtime', params=params
)
r.raise_for_status()
data = r.json()
values = data['data']['values']
# https://docs.tomorrow.io/reference/data-layers-weather-codes
code_lookup = {
1000: 'Clear, Sunny',
1100: 'Mostly Clear',
1101: 'Partly Cloudy',
1102: 'Mostly Cloudy',
1001: 'Cloudy',
2000: 'Fog',
2100: 'Light Fog',
4000: 'Drizzle',
4001: 'Rain',
4200: 'Light Rain',
4201: 'Heavy Rain',
5000: 'Snow',
5001: 'Flurries',
5100: 'Light Snow',
5101: 'Heavy Snow',
6000: 'Freezing Drizzle',
6001: 'Freezing Rain',
6200: 'Light Freezing Rain',
6201: 'Heavy Freezing Rain',
7000: 'Ice Pellets',
7101: 'Heavy Ice Pellets',
7102: 'Light Ice Pellets',
8000: 'Thunderstorm',
}
return {
'temperature': f'{values["temperatureApparent"]:0.0f}°C',
'description': code_lookup.get(values['weatherCode'], 'Unknown'),
}
TOOL_TO_DISPLAY_NAME = {
'get_lat_lng': 'Geocoding API',
"get_weather": "Weather API"
}
groq_client = Groq()
client = AsyncClient()
weather_api_key = os.getenv('WEATHER_API_KEY')
# create a free API key at https://geocode.maps.co/
geo_api_key = os.getenv('GEO_API_KEY')
deps = Deps(
client=client, weather_api_key=weather_api_key, geo_api_key=geo_api_key
)
async def stream_from_agent(prompt: str, chatbot: list[dict], past_messages: list):
yield "", gr.skip(), gr.skip()
chatbot.append({'role': 'user', 'content': prompt})
yield gr.skip(), chatbot, gr.skip()
async with weather_agent.run_stream(prompt, deps=deps, message_history=past_messages) as result:
for message in result.new_messages():
past_messages.append(message)
if isinstance(message, ModelStructuredResponse):
for call in message.calls:
gr_message = {"role": "assistant",
"content": "",
"metadata": {"title": f"### 🛠️ Using {TOOL_TO_DISPLAY_NAME[call.tool_name]}",
"id": call.tool_id}
}
chatbot.append(gr_message)
if isinstance(message, ToolReturn):
for gr_message in chatbot:
if gr_message.get('metadata', {}).get('id', "") == message.tool_id:
gr_message['content'] = f"Output: {json.dumps(message.content)}"
yield gr.skip(), chatbot, gr.skip()
chatbot.append({'role': 'assistant', 'content': ""})
async for message in result.stream_text():
chatbot[-1]["content"] = message
yield gr.skip(), chatbot, gr.skip()
data = await result.get_data()
past_messages.append(ModelTextResponse(content=data))
yield gr.skip(), gr.skip(), past_messages
with gr.Blocks() as demo:
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; gap: 2rem; padding: 1rem; width: 100%">
<img src="https://ai.pydantic.dev/img/logo-white.svg" style="max-width: 200px; height: auto">
<div>
<h1 style="margin: 0 0 1rem 0">Vacation Packing Assistant</h1>
<h3 style="margin: 0 0 0.5rem 0">
This assistant will help you pack for your vacation. Enter your destination and it will provide you with a concise packing list based on the weather forecast.
</h3>
<h3 style="margin: 0">
Feel free to ask for help with any other questions you have about your trip!
</h3>
</div>
</div>
"""
)
past_messages = gr.State([])
chatbot = gr.Chatbot(label="Packing Assistant", type="messages",
avatar_images=(None, "https://ai.pydantic.dev/img/logo-white.svg"))
prompt = gr.Textbox(lines=1, label="Enter your destination or follow-up question", placeholder="Miami, Florida")
prompt.submit(stream_from_agent, inputs=[prompt, chatbot, past_messages],
outputs=[prompt, chatbot, past_messages])
if __name__ == '__main__':
demo.launch()