File size: 15,485 Bytes
583664a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2b6846
c0d7f9d
 
e62e803
 
583664a
 
 
 
 
 
 
 
 
 
 
 
e62e803
 
e0ed1f1
583664a
 
 
 
e0ed1f1
 
 
 
 
 
 
 
 
583664a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0ed1f1
 
 
583664a
 
 
 
 
 
 
e0ed1f1
 
 
 
583664a
 
 
e0ed1f1
583664a
 
e0ed1f1
583664a
e0ed1f1
 
 
583664a
 
 
 
 
 
e0ed1f1
 
583664a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82ffb8c
e0ed1f1
 
583664a
 
 
 
82ffb8c
e0ed1f1
 
 
 
82ffb8c
e0ed1f1
583664a
 
 
e0ed1f1
 
fcd94b5
583664a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcd94b5
583664a
fcd94b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0ed1f1
 
583664a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0ed1f1
583664a
c0d7f9d
 
e0ed1f1
 
c0d7f9d
 
 
 
 
e0ed1f1
c0d7f9d
 
 
 
 
e0ed1f1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import streamlit as st
import os.path
import pathlib

import pandas as pd
import numpy as np
import PyPDF2
from PyPDF2 import PdfReader
from os import walk
import nltk
import glob

import plotly.express as px
from wordcloud import WordCloud
import plotly.io as pio
from plotly.subplots import make_subplots
import plotly.graph_objs as go
import pandas as pd
import plotly.offline as pyo

import io
from io import StringIO

#@st.cache_resource()
@st.cache()
def get_nl():
    return nltk.download('punkt')
get_nl()

from nltk.tokenize import sent_tokenize
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline

# if os.path.exists("report.html"):
#     os.remove("report.html")


#@st.cache_resource()
@st.cache(allow_output_mutation=True)
def get_sentiment_model():
    tokenizer = AutoTokenizer.from_pretrained("ProsusAI/finbert")
    model = AutoModelForSequenceClassification.from_pretrained("ProsusAI/finbert")
    return tokenizer,model

tokenizer_sentiment,model_sentiment = get_sentiment_model()

@st.cache(allow_output_mutation=True)
def get_emotion_model():
    tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
    model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
    return tokenizer,model

tokenizer_emotion,model_emotion = get_emotion_model()

def extract_text_from_pdf(path):
  text=''
  reader = PdfReader(path)
  number_of_pages = len(reader.pages)
  print(number_of_pages)
  for i in range(number_of_pages):
    page=reader.pages[i]
    text = text + page.extract_text()
  return text

# Create a button to download the HTML file
def download_html():
    with st.spinner('Downloading HTML file...'):
        # Get the HTML content
        with open('report.html', "r") as f:
            html = f.read()
        f.close()
        # Set the file name and content type
        file_name = "report.html"
        mime_type = "text/html"
        # Use st.download_button() to create a download button
        print('download button')
        st.download_button(label="Download Report", data=html, file_name=file_name, mime=mime_type)
        st.stop()

if 'filename_key' not in st.session_state:
    st.session_state.filename_key = ''

st.write("""
# Sentiment Analysis Tool
""")
#uploaded_file = st.file_uploader("Choose a PDF file")
#uploaded_file = st.file_uploader("Choose a PDF file", accept_multiple_files=False, type=['pdf'])
uploaded_file = st.file_uploader("Choose a PDF file", accept_multiple_files=True, type=['pdf'])
#if uploaded_file is not None:
if len(uploaded_file)==0:
    #print('none')
    st.session_state.filename_key = ''
elif len(uploaded_file)>0:
    import time
    # Wait for 5 seconds
    time.sleep(5)

    pdf_reader = PyPDF2.PdfReader(uploaded_file[0])
    num_pages = len(pdf_reader.pages)
    file_name = uploaded_file[0].name
    
    # st.write(st.session_state.filename_key)
    # print(file_name)
    # st.write("Filename:", file_name)
    if num_pages > 20:
        st.error("Pages in PDF file should be less than 20.")
    # Check that only one file was uploaded
    #elif isinstance(uploaded_file, list):
    elif len(uploaded_file) > 1:
        st.error("Please upload only one PDF file at a time.")
    elif st.session_state.filename_key == file_name:
        st.write("Report downloaded successfully")
    else:
        #uploaded_file = uploaded_file[0]
        # Check that the file is a PDF
        if uploaded_file[0].type != 'application/pdf':
            st.error("Please upload a PDF file.")
        else:

            ############################ 1. Extract text from PDF ############################
            text=''
            # return text from pdf
            pdf_reader = PyPDF2.PdfReader(uploaded_file[0])
            # Get the number of pages in the PDF file
            num_pages = len(pdf_reader.pages)
            # Display the number of pages in the PDF file
            st.write(f"Number of pages in PDF file: {num_pages}")
            for i in range(num_pages):
                page=pdf_reader.pages[i]
                text = text + page.extract_text()



            ############################ 2. Sentiment Analysis ############################
            text = text.replace("\n", " " )
            sentences = sent_tokenize(text)
            title = sentences[0]
            long_sentence=[]
            small_sentence=[]
            useful_sentence=[]
            for i in sentences:
                if len(i) > 510:
                    long_sentence.append(i)
                elif len(i) < 50:
                    small_sentence.append(i)
                else:
                    useful_sentence.append(i)
            
            del sentences

            with st.spinner('Performing Sentiment Analysis...'):
                tokenizer = tokenizer_sentiment
                model = model_sentiment
                pipe = pipeline(model="ProsusAI/finbert") 
                classifier = pipeline(model="ProsusAI/finbert") 
                output = classifier(useful_sentence)

            with st.spinner('Performing Emotion Analysis...'):
                tokenizer = tokenizer_emotion
                model = model_emotion
                classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", top_k=1)
                output_emotion = classifier(useful_sentence)
                

                df = pd.DataFrame.from_dict(output)
                df['Sentence']= pd.Series(useful_sentence)

            ############################ 3. Processing ############################

            ############################ 3.1. Sentiment Analysis ############################
            labels = ['neutral', 'positive', 'negative']
            values = df.label.value_counts().to_list()

            # removing words
            words_to_remove = ["s", "quarter", "thank", "million", "Thank", "quetion", 'wa', 'rate', 'firt',
                               "customer", "business", "last year", "year", 'lat', 'well', 'jut', 'thi', 'cutomer',
                               "will", "think", "higher", "question", "going"]
            for word in words_to_remove:
                text = text.replace(word, "")
            wordcloud = WordCloud(background_color='white', width=800, height=400).generate(text)
            image = wordcloud.to_image()

            pos_df = df[df['label']=='positive']
            pos_df = pos_df[['score', 'Sentence']]
            pos_df = pos_df.sort_values('score', ascending=False)
            pos_df_mean = pos_df.score.mean()
            pos_df['score'] = pos_df['score'].round(4)
            pos_df.rename(columns = {'Sentence':'Positive Sentences'}, inplace = True)

            neg_df = df[df['label']=='negative']
            neg_df = neg_df[['score', 'Sentence']]
            neg_df = neg_df.sort_values('score', ascending=False)
            neg_df_mean = neg_df.score.mean()
            neg_df['score'] = neg_df['score'].round(4)
            neg_df.rename(columns = {'Sentence':'Negative Sentences'}, inplace = True)

            neu_df = df[df['label']=='neutral']
            neu_df = neu_df[['score', 'Sentence']]
            neu_df = neu_df.sort_values('score', ascending=False)
            #neu_df_mean = neu_df.score.mean()
            neu_df['score'] = neu_df['score'].round(4)
            neu_df.rename(columns = {'Sentence':'Neutral Sentences'}, inplace = True)
            
            df_temp = neg_df
            df_temp = df_temp['score'] * -1
            df_temp = pd.concat([df_temp, pos_df])

            ############################ 3.2. Emotion Analysis ############################

            df_emotion = pd.DataFrame.from_dict(output_emotion)
            df_emotion['Sentence']= pd.Series(useful_sentence)

            df_joy = df_emotion[df_emotion['label']=='joy']
            df_joy = df_joy[['score', 'Sentence']]
            df_joy = df_joy.sort_values('score', ascending=False)
            df_joy['score'] = df_joy['score'].round(4)
            df_joy.rename(columns = {'Sentence':'Happy Sentences'}, inplace = True)

            df_sadness = df_emotion[df_emotion['label']=='sadness']
            df_sadness = df_sadness[['score', 'Sentence']]
            df_sadness = df_sadness.sort_values('score', ascending=False)
            df_sadness['score'] = df_sadness['score'].round(4)
            df_sadness.rename(columns = {'Sentence':'Sad Sentences'}, inplace = True)

            df_anger = df_emotion[df_emotion['label']=='anger']
            df_anger = df_anger[['score', 'Sentence']]
            df_anger = df_anger.sort_values('score', ascending=False)
            df_anger['score'] = df_anger['score'].round(4)
            df_anger.rename(columns = {'Sentence':'Angry Sentences'}, inplace = True)

            df_surprise = df_emotion[df_emotion['label']=='surprise']
            df_surprise = df_surprise[['score', 'Sentence']]
            df_surprise = df_surprise.sort_values('score', ascending=False)
            df_surprise['score'] = df_surprise['score'].round(4)
            df_surprise.rename(columns = {'Sentence':'Surprised Sentences'}, inplace = True)

            
            ############################ 4. Plotting ############################

            fig = make_subplots(
                rows=26, cols=6,
                specs=[ [None, None, None, None, None, None],
                        [None, None, None, None, None, None],
                        [None, None, None, None, None, None],
                        [None, None, None, None, None, None],
                        [None, None, None, None, None, None],
                        [{"type": "pie", "rowspan": 6, "colspan": 2}, None, {"type": "indicator", "rowspan": 6, "colspan": 2}, None, {"type": "indicator", "rowspan": 6, "colspan": 2}, None],
                        [None, None, None, None, None, None],
                        [None, None, None, None, None, None],
                        [None, None, None, None, None, None],
                        [None, None, None, None, None, None],
                        [None, None, None, None, None, None],
                        [{"type": "image", "rowspan": 15, "colspan": 3}, None, None, {"type": "table", "rowspan": 5, "colspan": 3}, None, None],
                        [None, None, None, None, None, None],
                        [None, None, None, None, None, None],
                        [None, None, None, None, None, None],
                        [None, None, None, None, None, None],
                        [None, None, None, {"type": "table", "rowspan": 5, "colspan": 3}, None, None],
                        [None, None, None, None, None, None],
                        [None, None, None, None, None, None],
                        [None, None, None, None, None, None],
                        [None, None, None, None, None, None],
                        [None, None, None, {"type": "table", "rowspan": 5, "colspan": 3}, None, None],
                        [None, None, None, None, None, None],
                        [None, None, None, None, None, None],
                        [None, None, None, None, None, None],
                        [None, None, None, None, None, None],
                    ],
            )
            colors = px.colors.diverging.Portland#RdBu
            fig.add_trace(go.Pie(labels=labels, values=values, hole = 0.5,
                        title = 'Count by label', 
                        marker=dict(colors=colors,
                        line=dict(width=2, color='white'))),
                        row=6, col=1)

            fig.add_trace(go.Indicator(
                mode = "number",
                value = len(df.label.values.tolist()),
                title = {"text": "Count of Sentence"}), row=6, col=3)

            fig.add_trace(go.Indicator(
                mode = "gauge+number",
                value = df_temp.score.mean(),
                domain = {'x': [0, 1], 'y': [0, 1]},
                title = {'text': "Average of Score", 'font': {'size': 16}},
                gauge = {
                    'axis': {'range': [-1, 1], 'tickwidth': 1, 'tickcolor': "darkblue"}, 
                    'bar': {'color': "darkblue"},
                    'steps': [
                        {'range': [-0.29, 0.29], 'color': 'white'},
                        {'range': [0.3, 1], 'color': 'green'},
                        {'range': [-1, -0.3], 'color': 'red'}
                    ],
                    'threshold': {
                        'line': {'color': "black", 'width': 4},
                        'thickness': 0.75,
                        'value': abs((pos_df_mean - neg_df_mean))
                    }
                }
            ), row=6, col=5)

            if df_temp.score.mean() < -0.29:
                fig.update_traces(title_text="Cummulative Sentiment Negative", selector=dict(type='indicator'), row=6, col=5)
            elif df_temp.score.mean() < 0.29:
                fig.update_traces(title_text="Cummulative Sentiment Neutral", selector=dict(type='indicator'), row=6, col=5)
            else:
                fig.update_traces(title_text="Cummulative Sentiment Positive", selector=dict(type='indicator'), row=6, col=5)

            fig.add_trace(go.Image(z=image), row=12, col=1)
            fig.update_xaxes(visible=False, row=12, col=1)
            fig.update_yaxes(visible=False, row=12, col=1)

            table_trace1 = go.Table(
                header=dict(values=list(pos_df.columns), fill_color='lightgray', align='left'),
                cells=dict(values=[pos_df[name] for name in pos_df.columns], fill_color='white', align='left'),
                columnwidth=[1, 4]
            )
            fig.add_trace(table_trace1, row=12, col=4)

            table_trace2 = go.Table(
                header=dict(values=list(neg_df.columns), fill_color='lightgray', align='left'),
                cells=dict(values=[neg_df[name] for name in neg_df.columns], fill_color='white', align='left'),
                columnwidth=[1, 4]
            )
            fig.add_trace(table_trace2, row=17, col=4)

            table_trace2 = go.Table(
                header=dict(values=list(neu_df.columns), fill_color='lightgray', align='left'),
                cells=dict(values=[neu_df[name] for name in neu_df.columns], fill_color='white', align='left'),
                columnwidth=[1, 4]
            )
            fig.add_trace(table_trace2, row=22, col=4)

            import textwrap
            wrapped_title = "\n".join(textwrap.wrap(title, width=50))

            # Add HTML tags to force line breaks in the title text
            wrapped_title = "<br>".join(wrapped_title.split("\n"))

            fig.update_layout(height=1500, showlegend=False, title={'text': f"<b>{wrapped_title} - Sentiment Analysis Report</b>", 'x': 0.5, 'xanchor': 'center','font': {'size': 32}})

            #pyo.plot(fig, filename='report.html')

            ############################## 5. Download Report ##############################

            buffer = io.StringIO()
            fig.write_html(buffer, include_plotlyjs='cdn')
            html_bytes = buffer.getvalue().encode()
    
            st.download_button(
                label='Download Report',
                data=html_bytes,
                file_name='report.html',
                mime='text/html'
            )

            st.session_state.filename_key = file_name