Spaces:
Runtime error
Runtime error
Commit
Β·
ce9c373
1
Parent(s):
0af0649
hf4
Browse files
app.py
CHANGED
@@ -131,8 +131,9 @@ elif len(uploaded_file)>0:
|
|
131 |
|
132 |
|
133 |
|
134 |
-
############################ 2.
|
135 |
text = text.replace("\n", " " )
|
|
|
136 |
sentences = sent_tokenize(text)
|
137 |
title = sentences[0]
|
138 |
long_sentence=[]
|
@@ -159,7 +160,7 @@ elif len(uploaded_file)>0:
|
|
159 |
tokenizer = tokenizer_emotion
|
160 |
model = model_emotion
|
161 |
classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", top_k=1)
|
162 |
-
|
163 |
|
164 |
|
165 |
df = pd.DataFrame.from_dict(output)
|
@@ -185,7 +186,7 @@ elif len(uploaded_file)>0:
|
|
185 |
pos_df = pos_df.sort_values('score', ascending=False)
|
186 |
pos_df_mean = pos_df.score.mean()
|
187 |
pos_df['score'] = pos_df['score'].round(4)
|
188 |
-
pos_df.rename(columns = {'Sentence':'Positive Sentences'}, inplace = True)
|
189 |
|
190 |
neg_df = df[df['label']=='negative']
|
191 |
neg_df = neg_df[['score', 'Sentence']]
|
@@ -207,6 +208,10 @@ elif len(uploaded_file)>0:
|
|
207 |
|
208 |
############################ 3.2. Emotion Analysis ############################
|
209 |
|
|
|
|
|
|
|
|
|
210 |
df_emotion = pd.DataFrame.from_dict(output_emotion)
|
211 |
df_emotion['Sentence']= pd.Series(useful_sentence)
|
212 |
|
@@ -216,6 +221,8 @@ elif len(uploaded_file)>0:
|
|
216 |
df_joy['score'] = df_joy['score'].round(4)
|
217 |
df_joy.rename(columns = {'Sentence':'Joy Sentences'}, inplace = True)
|
218 |
num_of_joy_sentences = df_joy.shape[0]
|
|
|
|
|
219 |
|
220 |
df_sadness = df_emotion[df_emotion['label']=='sadness']
|
221 |
df_sadness = df_sadness[['score', 'Sentence']]
|
@@ -223,6 +230,8 @@ elif len(uploaded_file)>0:
|
|
223 |
df_sadness['score'] = df_sadness['score'].round(4)
|
224 |
df_sadness.rename(columns = {'Sentence':'Sad Sentences'}, inplace = True)
|
225 |
num_of_sad_sentences = df_sadness.shape[0]
|
|
|
|
|
226 |
|
227 |
df_anger = df_emotion[df_emotion['label']=='anger']
|
228 |
df_anger = df_anger[['score', 'Sentence']]
|
@@ -230,6 +239,8 @@ elif len(uploaded_file)>0:
|
|
230 |
df_anger['score'] = df_anger['score'].round(4)
|
231 |
df_anger.rename(columns = {'Sentence':'Angry Sentences'}, inplace = True)
|
232 |
num_of_anger_sentences = df_anger.shape[0]
|
|
|
|
|
233 |
|
234 |
df_surprise = df_emotion[df_emotion['label']=='surprise']
|
235 |
df_surprise = df_surprise[['score', 'Sentence']]
|
@@ -237,14 +248,16 @@ elif len(uploaded_file)>0:
|
|
237 |
df_surprise['score'] = df_surprise['score'].round(4)
|
238 |
df_surprise.rename(columns = {'Sentence':'Surprised Sentences'}, inplace = True)
|
239 |
num_of_surprise_sentences = df_surprise.shape[0]
|
|
|
|
|
240 |
|
241 |
############################ 4. Plotting ############################
|
242 |
|
243 |
fig = make_subplots(
|
244 |
-
rows=
|
245 |
specs=[ [None, None, None, None, None, None],
|
246 |
[None, None, None, None, None, None],
|
247 |
-
[None, None,
|
248 |
[None, None, None, None, None, None],
|
249 |
[None, None, None, None, None, None],
|
250 |
[{"type": "pie", "rowspan": 6, "colspan": 2}, None, {"type": "indicator", "rowspan": 6, "colspan": 2}, None, {"type": "indicator", "rowspan": 6, "colspan": 2}, None],
|
@@ -253,22 +266,33 @@ elif len(uploaded_file)>0:
|
|
253 |
[None, None, None, None, None, None],
|
254 |
[None, None, None, None, None, None],
|
255 |
[None, None, None, None, None, None],
|
256 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
[None, None, None, None, None, None],
|
258 |
[None, None, None, None, None, None],
|
259 |
[None, None, None, None, None, None],
|
260 |
[None, None, None, None, None, None],
|
261 |
-
[None, None,
|
262 |
[None, None, None, None, None, None],
|
263 |
[None, None, None, None, None, None],
|
264 |
[None, None, None, None, None, None],
|
|
|
265 |
[None, None, None, None, None, None],
|
266 |
-
[None, None, None, {"type": "table", "rowspan": 5, "colspan": 3}, None, None],
|
267 |
[None, None, None, None, None, None],
|
268 |
[None, None, None, None, None, None],
|
269 |
[None, None, None, None, None, None],
|
270 |
[None, None, None, None, None, None],
|
271 |
[None, None, None, None, None, None],
|
|
|
|
|
|
|
|
|
272 |
[None, None, None, None, None, None],
|
273 |
[None, None, None, None, None, None],
|
274 |
[None, None, None, None, None, None],
|
@@ -276,6 +300,11 @@ elif len(uploaded_file)>0:
|
|
276 |
)
|
277 |
|
278 |
############################ 4.1. Sentiment Analysis ############################
|
|
|
|
|
|
|
|
|
|
|
279 |
colors = px.colors.diverging.Portland#RdBu
|
280 |
fig.add_trace(go.Pie(labels=labels, values=values, hole = 0.5,
|
281 |
title = 'Count by label',
|
@@ -283,10 +312,12 @@ elif len(uploaded_file)>0:
|
|
283 |
line=dict(width=2, color='white'))),
|
284 |
row=6, col=1)
|
285 |
|
|
|
286 |
fig.add_trace(go.Indicator(
|
287 |
mode = "number",
|
288 |
value = len(df.label.values.tolist()),
|
289 |
title = {"text": "Count of Sentence"}), row=6, col=3)
|
|
|
290 |
|
291 |
fig.add_trace(go.Indicator(
|
292 |
mode = "gauge+number",
|
@@ -316,36 +347,93 @@ elif len(uploaded_file)>0:
|
|
316 |
else:
|
317 |
fig.update_traces(title_text="Cummulative Sentiment Positive", selector=dict(type='indicator'), row=6, col=5)
|
318 |
|
319 |
-
fig.add_trace(go.Image(z=image), row=
|
320 |
-
fig.update_xaxes(visible=False, row=
|
321 |
-
fig.update_yaxes(visible=False, row=
|
322 |
|
323 |
table_trace1 = go.Table(
|
324 |
header=dict(values=list(pos_df.columns), fill_color='lightgray', align='left'),
|
325 |
cells=dict(values=[pos_df[name] for name in pos_df.columns], fill_color='white', align='left'),
|
326 |
columnwidth=[1, 4]
|
327 |
)
|
328 |
-
fig.add_trace(table_trace1, row=
|
329 |
|
330 |
table_trace2 = go.Table(
|
331 |
header=dict(values=list(neg_df.columns), fill_color='lightgray', align='left'),
|
332 |
cells=dict(values=[neg_df[name] for name in neg_df.columns], fill_color='white', align='left'),
|
333 |
columnwidth=[1, 4]
|
334 |
)
|
335 |
-
fig.add_trace(table_trace2, row=
|
336 |
|
337 |
table_trace2 = go.Table(
|
338 |
header=dict(values=list(neu_df.columns), fill_color='lightgray', align='left'),
|
339 |
cells=dict(values=[neu_df[name] for name in neu_df.columns], fill_color='white', align='left'),
|
340 |
columnwidth=[1, 4]
|
341 |
)
|
342 |
-
fig.add_trace(table_trace2, row=
|
343 |
|
|
|
|
|
|
|
|
|
344 |
|
345 |
############## Under Construction ##############
|
346 |
|
347 |
############################ 4.2. Emotion Analysis ############################
|
348 |
-
go.Bar(x=['Joy', 'Sadness', 'Anger', 'Surprise'], y=[3, 4, 1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
|
350 |
import textwrap
|
351 |
wrapped_title = "\n".join(textwrap.wrap(title, width=50))
|
@@ -353,7 +441,7 @@ elif len(uploaded_file)>0:
|
|
353 |
# Add HTML tags to force line breaks in the title text
|
354 |
wrapped_title = "<br>".join(wrapped_title.split("\n"))
|
355 |
|
356 |
-
fig.update_layout(height=
|
357 |
|
358 |
#pyo.plot(fig, filename='report.html')
|
359 |
|
|
|
131 |
|
132 |
|
133 |
|
134 |
+
############################ 2. Running models ############################
|
135 |
text = text.replace("\n", " " )
|
136 |
+
text = text.replace("$", "dollar " )
|
137 |
sentences = sent_tokenize(text)
|
138 |
title = sentences[0]
|
139 |
long_sentence=[]
|
|
|
160 |
tokenizer = tokenizer_emotion
|
161 |
model = model_emotion
|
162 |
classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", top_k=1)
|
163 |
+
temp_emotion = classifier(useful_sentence)
|
164 |
|
165 |
|
166 |
df = pd.DataFrame.from_dict(output)
|
|
|
186 |
pos_df = pos_df.sort_values('score', ascending=False)
|
187 |
pos_df_mean = pos_df.score.mean()
|
188 |
pos_df['score'] = pos_df['score'].round(4)
|
189 |
+
pos_df.rename(columns = {'Sentence':'Positive Sentences'}, inplace = True)
|
190 |
|
191 |
neg_df = df[df['label']=='negative']
|
192 |
neg_df = neg_df[['score', 'Sentence']]
|
|
|
208 |
|
209 |
############################ 3.2. Emotion Analysis ############################
|
210 |
|
211 |
+
output_emotion = []
|
212 |
+
for temp in temp_emotion:
|
213 |
+
output_emotion.append(temp[0])
|
214 |
+
|
215 |
df_emotion = pd.DataFrame.from_dict(output_emotion)
|
216 |
df_emotion['Sentence']= pd.Series(useful_sentence)
|
217 |
|
|
|
221 |
df_joy['score'] = df_joy['score'].round(4)
|
222 |
df_joy.rename(columns = {'Sentence':'Joy Sentences'}, inplace = True)
|
223 |
num_of_joy_sentences = df_joy.shape[0]
|
224 |
+
if num_of_joy_sentences == 0:
|
225 |
+
df_joy.loc[0] = [0.0, '-------No joy sentences found in report-------']
|
226 |
|
227 |
df_sadness = df_emotion[df_emotion['label']=='sadness']
|
228 |
df_sadness = df_sadness[['score', 'Sentence']]
|
|
|
230 |
df_sadness['score'] = df_sadness['score'].round(4)
|
231 |
df_sadness.rename(columns = {'Sentence':'Sad Sentences'}, inplace = True)
|
232 |
num_of_sad_sentences = df_sadness.shape[0]
|
233 |
+
if num_of_sad_sentences == 0:
|
234 |
+
df_sadness.loc[0] = [0.0, '-------No sad sentences found in report-------']
|
235 |
|
236 |
df_anger = df_emotion[df_emotion['label']=='anger']
|
237 |
df_anger = df_anger[['score', 'Sentence']]
|
|
|
239 |
df_anger['score'] = df_anger['score'].round(4)
|
240 |
df_anger.rename(columns = {'Sentence':'Angry Sentences'}, inplace = True)
|
241 |
num_of_anger_sentences = df_anger.shape[0]
|
242 |
+
if num_of_anger_sentences == 0:
|
243 |
+
df_anger.loc[0] = [0.0, '-------No angry sentences found in report-------']
|
244 |
|
245 |
df_surprise = df_emotion[df_emotion['label']=='surprise']
|
246 |
df_surprise = df_surprise[['score', 'Sentence']]
|
|
|
248 |
df_surprise['score'] = df_surprise['score'].round(4)
|
249 |
df_surprise.rename(columns = {'Sentence':'Surprised Sentences'}, inplace = True)
|
250 |
num_of_surprise_sentences = df_surprise.shape[0]
|
251 |
+
if num_of_surprise_sentences == 0:
|
252 |
+
df_surprise.loc[0] = [0.0, '-------No surprised sentences found in report-------']
|
253 |
|
254 |
############################ 4. Plotting ############################
|
255 |
|
256 |
fig = make_subplots(
|
257 |
+
rows=41, cols=6,
|
258 |
specs=[ [None, None, None, None, None, None],
|
259 |
[None, None, None, None, None, None],
|
260 |
+
[None, None, {"type": "indicator", "rowspan": 3, "colspan": 2}, None, None, None],
|
261 |
[None, None, None, None, None, None],
|
262 |
[None, None, None, None, None, None],
|
263 |
[{"type": "pie", "rowspan": 6, "colspan": 2}, None, {"type": "indicator", "rowspan": 6, "colspan": 2}, None, {"type": "indicator", "rowspan": 6, "colspan": 2}, None],
|
|
|
266 |
[None, None, None, None, None, None],
|
267 |
[None, None, None, None, None, None],
|
268 |
[None, None, None, None, None, None],
|
269 |
+
[None, None, None, None, None, None],
|
270 |
+
[{"type": "image", "rowspan": 5, "colspan": 3}, None, None, {"type": "table", "rowspan": 5, "colspan": 3}, None, None],
|
271 |
+
[None, None, None, None, None, None],
|
272 |
+
[None, None, None, None, None, None],
|
273 |
+
[None, None, None, None, None, None],
|
274 |
+
[None, None, None, None, None, None],
|
275 |
+
[{"type": "table", "rowspan": 5, "colspan": 3}, None, None, {"type": "table", "rowspan": 5, "colspan": 3}, None, None],
|
276 |
+
[None, None, None, None, None, None],
|
277 |
[None, None, None, None, None, None],
|
278 |
[None, None, None, None, None, None],
|
279 |
[None, None, None, None, None, None],
|
280 |
[None, None, None, None, None, None],
|
281 |
+
[None, None, {"type": "indicator", "rowspan": 3, "colspan": 2}, None, None, None],
|
282 |
[None, None, None, None, None, None],
|
283 |
[None, None, None, None, None, None],
|
284 |
[None, None, None, None, None, None],
|
285 |
+
[{"type": "bar", "rowspan": 6, "colspan": 6}, None, None, None, None, None],
|
286 |
[None, None, None, None, None, None],
|
|
|
287 |
[None, None, None, None, None, None],
|
288 |
[None, None, None, None, None, None],
|
289 |
[None, None, None, None, None, None],
|
290 |
[None, None, None, None, None, None],
|
291 |
[None, None, None, None, None, None],
|
292 |
+
[{"type": "table", "rowspan": 2, "colspan": 3}, None, None, {"type": "table", "rowspan": 2, "colspan": 3}, None, None],
|
293 |
+
[None, None, None, None, None, None],
|
294 |
+
[None, None, None, None, None, None],
|
295 |
+
[{"type": "table", "rowspan": 2, "colspan": 3}, None, None, {"type": "table", "rowspan": 2, "colspan": 3}, None, None],
|
296 |
[None, None, None, None, None, None],
|
297 |
[None, None, None, None, None, None],
|
298 |
[None, None, None, None, None, None],
|
|
|
300 |
)
|
301 |
|
302 |
############################ 4.1. Sentiment Analysis ############################
|
303 |
+
fig.add_trace(go.Indicator(
|
304 |
+
mode = "number",
|
305 |
+
value = None,
|
306 |
+
title = {"text": "Sentiment Analysis"}), row=3, col=3)
|
307 |
+
|
308 |
colors = px.colors.diverging.Portland#RdBu
|
309 |
fig.add_trace(go.Pie(labels=labels, values=values, hole = 0.5,
|
310 |
title = 'Count by label',
|
|
|
312 |
line=dict(width=2, color='white'))),
|
313 |
row=6, col=1)
|
314 |
|
315 |
+
|
316 |
fig.add_trace(go.Indicator(
|
317 |
mode = "number",
|
318 |
value = len(df.label.values.tolist()),
|
319 |
title = {"text": "Count of Sentence"}), row=6, col=3)
|
320 |
+
#fig.update_traces(title_text="Sentiment Analysis", selector=dict(type='indicator'), row=6, col=3)
|
321 |
|
322 |
fig.add_trace(go.Indicator(
|
323 |
mode = "gauge+number",
|
|
|
347 |
else:
|
348 |
fig.update_traces(title_text="Cummulative Sentiment Positive", selector=dict(type='indicator'), row=6, col=5)
|
349 |
|
350 |
+
fig.add_trace(go.Image(z=image), row=13, col=1)
|
351 |
+
fig.update_xaxes(visible=False, row=13, col=1)
|
352 |
+
fig.update_yaxes(visible=False, row=13, col=1)
|
353 |
|
354 |
table_trace1 = go.Table(
|
355 |
header=dict(values=list(pos_df.columns), fill_color='lightgray', align='left'),
|
356 |
cells=dict(values=[pos_df[name] for name in pos_df.columns], fill_color='white', align='left'),
|
357 |
columnwidth=[1, 4]
|
358 |
)
|
359 |
+
fig.add_trace(table_trace1, row=13, col=4)
|
360 |
|
361 |
table_trace2 = go.Table(
|
362 |
header=dict(values=list(neg_df.columns), fill_color='lightgray', align='left'),
|
363 |
cells=dict(values=[neg_df[name] for name in neg_df.columns], fill_color='white', align='left'),
|
364 |
columnwidth=[1, 4]
|
365 |
)
|
366 |
+
fig.add_trace(table_trace2, row=18, col=4)
|
367 |
|
368 |
table_trace2 = go.Table(
|
369 |
header=dict(values=list(neu_df.columns), fill_color='lightgray', align='left'),
|
370 |
cells=dict(values=[neu_df[name] for name in neu_df.columns], fill_color='white', align='left'),
|
371 |
columnwidth=[1, 4]
|
372 |
)
|
373 |
+
fig.add_trace(table_trace2, row=18, col=1)
|
374 |
|
375 |
+
fig.add_trace(go.Indicator(
|
376 |
+
mode = "number",
|
377 |
+
value = None,
|
378 |
+
title = {"text": "Emotion Analysis"}), row=24, col=3)
|
379 |
|
380 |
############## Under Construction ##############
|
381 |
|
382 |
############################ 4.2. Emotion Analysis ############################
|
383 |
+
#go.Bar(x=['Joy', 'Sadness', 'Anger', 'Surprise'], y=[3, 4, 1])
|
384 |
+
|
385 |
+
# Add bar chart
|
386 |
+
colors_emotions = ['#174ecf', '#cfc517', '#940625', '#17cfcb']
|
387 |
+
emotion_bar_xlabels = ['Joy', 'Sadness', 'Anger', 'Surprise']
|
388 |
+
emotion_bar_ylabels = [num_of_joy_sentences,
|
389 |
+
num_of_sad_sentences,
|
390 |
+
num_of_anger_sentences,
|
391 |
+
num_of_surprise_sentences]
|
392 |
+
#annotations = [dict(x=x, y=y, text='π', showarrow=False) for x, y in zip(emotion_bar_xlabels, emotion_bar_ylabels)]
|
393 |
+
annotations = ['π', 'π', 'π‘', 'π―']
|
394 |
+
fig.add_trace(
|
395 |
+
go.Bar(x=emotion_bar_xlabels, y= emotion_bar_ylabels,
|
396 |
+
showlegend=True,
|
397 |
+
marker_color=colors_emotions,
|
398 |
+
text=annotations,
|
399 |
+
textfont=dict(size=40)),
|
400 |
+
row=28, col=1)
|
401 |
+
fig.update_xaxes(title_text='Emotions', title_font=dict(size=16), row=28, col=1)
|
402 |
+
fig.update_yaxes(title_text='Number of sentences', title_font=dict(size=16), row=28, col=1)
|
403 |
+
|
404 |
+
# df_anger.loc[0] = [0.0, 'None']
|
405 |
+
# df_anger
|
406 |
+
################## happiness table
|
407 |
+
table_trace2 = go.Table(
|
408 |
+
header=dict(values=list(df_joy.columns), fill_color='lightgray', align='left'),
|
409 |
+
cells=dict(values=[df_joy[name] for name in df_joy.columns], fill_color='white', align='left'),
|
410 |
+
columnwidth=[1, 4]
|
411 |
+
)
|
412 |
+
fig.add_trace(table_trace2, row=35, col=1)
|
413 |
+
|
414 |
+
################## sadness table
|
415 |
+
table_trace2 = go.Table(
|
416 |
+
header=dict(values=list(df_sadness.columns), fill_color='lightgray', align='left'),
|
417 |
+
cells=dict(values=[df_sadness[name] for name in df_sadness.columns], fill_color='white', align='left'),
|
418 |
+
columnwidth=[1, 4]
|
419 |
+
)
|
420 |
+
fig.add_trace(table_trace2, row=35, col=4)
|
421 |
+
|
422 |
+
################## surprise table
|
423 |
+
table_trace2 = go.Table(
|
424 |
+
header=dict(values=list(df_surprise.columns), fill_color='lightgray', align='left'),
|
425 |
+
cells=dict(values=[df_surprise[name] for name in df_surprise.columns], fill_color='white', align='left'),
|
426 |
+
columnwidth=[1, 4]
|
427 |
+
)
|
428 |
+
fig.add_trace(table_trace2, row=38, col=1)
|
429 |
+
|
430 |
+
################## anger table
|
431 |
+
table_trace2 = go.Table(
|
432 |
+
header=dict(values=list(df_anger.columns), fill_color='lightgray', align='left'),
|
433 |
+
cells=dict(values=[df_anger[name] for name in df_anger.columns], fill_color='white', align='left'),
|
434 |
+
columnwidth=[1, 4]
|
435 |
+
)
|
436 |
+
fig.add_trace(table_trace2, row=38, col=4)
|
437 |
|
438 |
import textwrap
|
439 |
wrapped_title = "\n".join(textwrap.wrap(title, width=50))
|
|
|
441 |
# Add HTML tags to force line breaks in the title text
|
442 |
wrapped_title = "<br>".join(wrapped_title.split("\n"))
|
443 |
|
444 |
+
fig.update_layout(height=3000, showlegend=False, title={'text': f"<b>{wrapped_title} - Text Analysis Report</b>", 'x': 0.5, 'xanchor': 'center','font': {'size': 32}})
|
445 |
|
446 |
#pyo.plot(fig, filename='report.html')
|
447 |
|