Spaces:
Runtime error
Runtime error
Commit
·
7b2bba1
1
Parent(s):
0057f36
first push
Browse files- app.py +137 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from nest2D import Point, Box, Item, nest, SVGWriter
|
2 |
+
import plotly
|
3 |
+
import numpy as np
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
import cv2
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
def transform(point:list[float], x:float, y:float, rotation:float):
|
9 |
+
if point is None:
|
10 |
+
return None
|
11 |
+
|
12 |
+
point = np.array([point[0], point[1], 1])
|
13 |
+
matrix = np.array([[np.cos(rotation), -np.sin(rotation), x],
|
14 |
+
[np.sin(rotation), np.cos(rotation), y],
|
15 |
+
[0,0,1]])
|
16 |
+
|
17 |
+
return (matrix@point)[:2]
|
18 |
+
|
19 |
+
class BinPacking:
|
20 |
+
|
21 |
+
def __init__(self, width:int, height:int, image:np.ndarray, imageScale:float=1) -> None:
|
22 |
+
self.width = width
|
23 |
+
self.height = height
|
24 |
+
self.pgrp = None
|
25 |
+
print(image.shape)
|
26 |
+
self.image = cv2.resize(image, (int(image.shape[1]*imageScale), int(image.shape[0]*imageScale)))
|
27 |
+
if self.image.shape[2] == 4:
|
28 |
+
x,y = np.where(self.image[:,:,3]==0)
|
29 |
+
self.image[x,y] = np.array([255,255,255,0])
|
30 |
+
self.imgray = cv2.cvtColor(self.image, cv2.COLOR_BGRA2GRAY)
|
31 |
+
else:
|
32 |
+
self.imgray = cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY)
|
33 |
+
self.imgray = cv2.bitwise_not(self.imgray)
|
34 |
+
|
35 |
+
@property
|
36 |
+
def box(self):
|
37 |
+
return Box(self.width, self.height)
|
38 |
+
|
39 |
+
def pack(self):
|
40 |
+
# make margin
|
41 |
+
imagem = cv2.dilate(self.imgray, np.ones((3,3), np.uint8), iterations=10)
|
42 |
+
_, thresh = cv2.threshold(imagem, 127, 255, 0)
|
43 |
+
|
44 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
45 |
+
contourList = []
|
46 |
+
for contour in contours:
|
47 |
+
contourList.extend(contour)
|
48 |
+
|
49 |
+
hull = cv2.convexHull(np.array(contourList).reshape(-1,2))
|
50 |
+
hull = np.append(hull, [hull[0]], axis=0).reshape(-1,2)
|
51 |
+
item = Item(
|
52 |
+
[
|
53 |
+
Point(point[0], point[1])
|
54 |
+
for point in np.flip(hull, 0)
|
55 |
+
]
|
56 |
+
)
|
57 |
+
|
58 |
+
max_item = int(self.width*self.height/item.area)
|
59 |
+
self.pgrp = nest([item,]*max_item, self.box)
|
60 |
+
|
61 |
+
return self
|
62 |
+
|
63 |
+
def visualize(self):
|
64 |
+
if self.pgrp == None:
|
65 |
+
return None
|
66 |
+
|
67 |
+
_, thresh = cv2.threshold(self.imgray, 127, 255, 0)
|
68 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
69 |
+
transformedPoints = []
|
70 |
+
for item in self.pgrp[0]:
|
71 |
+
for contour in contours:
|
72 |
+
for point in contour:
|
73 |
+
transformedPoints.append(transform(point[0], item.translation.x, item.translation.y, item.rotation))
|
74 |
+
transformedPoints.append([None,None])
|
75 |
+
transformedPoints.append([None,None])
|
76 |
+
|
77 |
+
fig = go.Figure()
|
78 |
+
fig.add_trace(go.Scatter(
|
79 |
+
x=[0, self.width, self.width, 0, 0],
|
80 |
+
y=[0, 0, self.height, self.height, 0],
|
81 |
+
fill="toself",
|
82 |
+
mode="lines",
|
83 |
+
textposition="bottom right",
|
84 |
+
))
|
85 |
+
fig.add_trace(go.Scatter(
|
86 |
+
x=[point[0] for point in transformedPoints],
|
87 |
+
y=[point[1] for point in transformedPoints],
|
88 |
+
mode="lines",
|
89 |
+
textposition="bottom right",
|
90 |
+
))
|
91 |
+
fig.update_layout(
|
92 |
+
autosize=False,
|
93 |
+
width=500,
|
94 |
+
height=500,
|
95 |
+
margin=dict(
|
96 |
+
l=50,
|
97 |
+
r=50,
|
98 |
+
b=100,
|
99 |
+
t=100,
|
100 |
+
pad=4
|
101 |
+
),
|
102 |
+
paper_bgcolor="LightSteelBlue",
|
103 |
+
)
|
104 |
+
return fig
|
105 |
+
|
106 |
+
|
107 |
+
def process(width:int, height:int, scale:float, image: np.ndarray):
|
108 |
+
|
109 |
+
packer = BinPacking(width, height, image, scale)
|
110 |
+
|
111 |
+
packer.pack()
|
112 |
+
figure = packer.visualize()
|
113 |
+
return figure
|
114 |
+
|
115 |
+
|
116 |
+
if __name__ == "__main__":
|
117 |
+
with gr.Blocks() as demo:
|
118 |
+
gr.Markdown(
|
119 |
+
"""
|
120 |
+
# Image fitting
|
121 |
+
"""
|
122 |
+
)
|
123 |
+
|
124 |
+
with gr.Row():
|
125 |
+
with gr.Column():
|
126 |
+
image = gr.Image(image_mode="RGBA")
|
127 |
+
with gr.Row():
|
128 |
+
width = gr.Number(1500,precision=0)
|
129 |
+
height = gr.Number(1500,precision=0)
|
130 |
+
scale = gr.Number(1.0)
|
131 |
+
fit = gr.Button("Submit")
|
132 |
+
|
133 |
+
plot_output = gr.Plot()
|
134 |
+
|
135 |
+
fit.click(fn=process, inputs=[width, height, scale, image], outputs=plot_output)
|
136 |
+
|
137 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
plotly
|
2 |
+
nest2D
|