Daryl Lim
commited on
Commit
·
43b39f0
1
Parent(s):
35d4340
Update app.py
Browse files
app.py
CHANGED
@@ -1,82 +1,124 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
|
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
5 |
|
6 |
-
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
remove_codes = ['<2>', '<2en_xx_simple>', '<2translate>', '<2back_translated>', '<2zxx_xx_dtynoise>', '<2transliterate>']
|
11 |
-
language_codes = [token for token in language_codes if token not in remove_codes]
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
"google/madlad400-3b-mt",
|
15 |
"google/madlad400-7b-mt",
|
16 |
"google/madlad400-10b-mt",
|
17 |
"google/madlad400-7b-mt-bt"
|
18 |
]
|
19 |
|
20 |
-
|
21 |
|
22 |
-
def load_tokenizer_model(model_name):
|
23 |
"""
|
24 |
Load tokenizer and model for a chosen model name.
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
"""
|
26 |
-
if model_name not in
|
27 |
-
# Load tokenizer and model for first time
|
28 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
29 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
30 |
-
model.
|
31 |
-
model
|
32 |
-
|
33 |
-
return model_resources[model_name]
|
34 |
|
35 |
@spaces.GPU
|
36 |
-
def translate(text,
|
37 |
"""
|
38 |
Translate the input text from English to another language.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
# Load tokenizer and model if not already loaded
|
41 |
tokenizer, model = load_tokenizer_model(model_name)
|
42 |
|
43 |
-
text =
|
44 |
-
input_ids = tokenizer(text, return_tensors="pt").input_ids.to(
|
45 |
|
46 |
outputs = model.generate(input_ids=input_ids, max_new_tokens=128000)
|
47 |
text_translated = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
48 |
|
49 |
return text_translated[0]
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
Translation from English to
|
|
|
54 |
"""
|
55 |
|
|
|
56 |
input_text = gr.Textbox(
|
57 |
label="Text",
|
58 |
placeholder="Enter text here"
|
59 |
)
|
|
|
60 |
target_language = gr.Dropdown(
|
61 |
-
choices=
|
62 |
-
value="
|
63 |
label="Target language"
|
64 |
)
|
|
|
65 |
model_choice = gr.Dropdown(
|
66 |
-
choices=
|
67 |
value="google/madlad400-3b-mt",
|
68 |
label="Model"
|
69 |
)
|
|
|
70 |
output_text = gr.Textbox(label="Translation")
|
71 |
|
|
|
72 |
demo = gr.Interface(
|
73 |
fn=translate,
|
74 |
inputs=[input_text, target_language, model_choice],
|
75 |
outputs=output_text,
|
76 |
-
title=
|
77 |
-
description=
|
78 |
)
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
demo.launch()
|
|
|
1 |
+
"""
|
2 |
+
This module provides an interface for translation using the MADLAD-400 models.
|
3 |
+
The interface allows users to enter English text, select the target language, and choose a model.
|
4 |
+
The user will receive the translated text.
|
5 |
+
"""
|
6 |
+
|
7 |
import gradio as gr
|
8 |
+
import spaces
|
9 |
import torch
|
10 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
11 |
+
from LangMap.langid_mapping import langid_to_language
|
12 |
|
13 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
|
15 |
+
# Initialize the tokenizer
|
16 |
+
TOKENIZER_3B_MT = AutoTokenizer.from_pretrained("google/madlad400-3b-mt", use_fast=True)
|
|
|
|
|
17 |
|
18 |
+
# Retrieve the language codes
|
19 |
+
LANGUAGE_CODES = [token for token in TOKENIZER_3B_MT.get_vocab().keys() if token in langid_to_language.keys()]
|
20 |
+
|
21 |
+
# Mapping language codes to human readable language names
|
22 |
+
LANGUAGE_MAP = {k: v for k, v in langid_to_language.items() if k in LANGUAGE_CODES}
|
23 |
+
|
24 |
+
# Invert the language mapping for reverse lookup (from language name to language code)
|
25 |
+
NAME_TO_CODE_MAP = {name: code for code, name in LANGUAGE_MAP.items()}
|
26 |
+
|
27 |
+
# Extract the language names for the dropdown in the Gradio interface
|
28 |
+
LANGUAGE_NAMES = list(LANGUAGE_MAP.values())
|
29 |
+
|
30 |
+
# Model choices
|
31 |
+
MODEL_CHOICES = [
|
32 |
"google/madlad400-3b-mt",
|
33 |
"google/madlad400-7b-mt",
|
34 |
"google/madlad400-10b-mt",
|
35 |
"google/madlad400-7b-mt-bt"
|
36 |
]
|
37 |
|
38 |
+
MODEL_RESOURCES = {}
|
39 |
|
40 |
+
def load_tokenizer_model(model_name: str):
|
41 |
"""
|
42 |
Load tokenizer and model for a chosen model name.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
model_name (str): The name of the model to load.
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
tuple: The tokenizer and model for the specified model.
|
49 |
"""
|
50 |
+
if model_name not in MODEL_RESOURCES:
|
51 |
+
# Load tokenizer and model for the first time
|
52 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
53 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
54 |
+
model.to(DEVICE)
|
55 |
+
MODEL_RESOURCES[model_name] = (tokenizer, model)
|
56 |
+
return MODEL_RESOURCES[model_name]
|
|
|
57 |
|
58 |
@spaces.GPU
|
59 |
+
def translate(text: str, target_language_name: str, model_name: str) -> str:
|
60 |
"""
|
61 |
Translate the input text from English to another language.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
text (str): The input text to be translated.
|
65 |
+
target_language_name (str): The human readable target language name.
|
66 |
+
model_name (str): The model name for translation.
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
str: The translated text.
|
70 |
"""
|
71 |
+
# Convert the selected language name back to its corresponding language code
|
72 |
+
target_language_code = NAME_TO_CODE_MAP.get(target_language_name)
|
73 |
+
|
74 |
+
if target_language_code is None:
|
75 |
+
raise ValueError(f"Unsupported language: {target_language_name}")
|
76 |
+
|
77 |
# Load tokenizer and model if not already loaded
|
78 |
tokenizer, model = load_tokenizer_model(model_name)
|
79 |
|
80 |
+
text = target_language_code + text
|
81 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids.to(DEVICE)
|
82 |
|
83 |
outputs = model.generate(input_ids=input_ids, max_new_tokens=128000)
|
84 |
text_translated = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
85 |
|
86 |
return text_translated[0]
|
87 |
|
88 |
+
TITLE = "MADLAD-400 Translation"
|
89 |
+
DESCRIPTION = """
|
90 |
+
Translation from English to (almost) 400 languages based on [research](https://arxiv.org/pdf/2309.04662)
|
91 |
+
by Google DeepMind and Google Research.
|
92 |
"""
|
93 |
|
94 |
+
# Gradio components
|
95 |
input_text = gr.Textbox(
|
96 |
label="Text",
|
97 |
placeholder="Enter text here"
|
98 |
)
|
99 |
+
|
100 |
target_language = gr.Dropdown(
|
101 |
+
choices=LANGUAGE_NAMES, # Use language names instead of codes
|
102 |
+
value="Hawaiian", # Default human readable language name
|
103 |
label="Target language"
|
104 |
)
|
105 |
+
|
106 |
model_choice = gr.Dropdown(
|
107 |
+
choices=MODEL_CHOICES,
|
108 |
value="google/madlad400-3b-mt",
|
109 |
label="Model"
|
110 |
)
|
111 |
+
|
112 |
output_text = gr.Textbox(label="Translation")
|
113 |
|
114 |
+
# Define the Gradio interface
|
115 |
demo = gr.Interface(
|
116 |
fn=translate,
|
117 |
inputs=[input_text, target_language, model_choice],
|
118 |
outputs=output_text,
|
119 |
+
title=TITLE,
|
120 |
+
description=DESCRIPTION
|
121 |
)
|
122 |
|
123 |
+
# Launch the Gradio interface
|
124 |
+
demo.launch()
|
|