Daryl Fung commited on
Commit
9b9ea2f
·
0 Parent(s):

initial commit

Browse files
.gitattributes ADDED
@@ -0,0 +1 @@
 
 
1
+ *.xlsx filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ .idea/
2
+ __pycache__/
app.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from keybert import KeyBERT
3
+ import spacy
4
+ import string
5
+ from spacy import displacy
6
+ from pathlib import Path
7
+ from PIL import Image
8
+
9
+ from keyword_extraction import keyword_extract
10
+ from keyphrase_extraction import get_top_key_phrases, display_key_phrases
11
+ from word import show_gram_plot
12
+
13
+
14
+ nlp = spacy.load("en_core_web_sm")
15
+
16
+ def greet(name, descriptions):
17
+ outputs = []
18
+ descriptions = descriptions.translate(str.maketrans('', '', string.punctuation))
19
+
20
+ # run word count
21
+ show_gram_plot(descriptions, 1, 10, save_output=f'results/{name}/{1}_gram.png')
22
+ show_gram_plot(descriptions, 2, 10, save_output=f'results/{name}/{2}_gram.png')
23
+ show_gram_plot(descriptions, 3, 10, save_output=f'results/{name}/{3}_gram.png')
24
+ outputs.append(Image.open(f'results/{name}/1_gram.png'))
25
+ outputs.append(Image.open(f'results/{name}/2_gram.png'))
26
+ outputs.append(Image.open(f'results/{name}/3_gram.png'))
27
+
28
+ # run named entity recognition
29
+ spacy_descriptions = nlp(descriptions)
30
+ # Create a visualization of named entities
31
+ ner_svg = displacy.render(spacy_descriptions, style="ent", jupyter=False, page=True)
32
+ filename = Path(f'results/{name}/ner.html')
33
+ filename.open('w', encoding='utf-8').write(ner_svg)
34
+
35
+ # run keyword extraction
36
+ kw_model = KeyBERT()
37
+ keyword_extract(kw_model, 1, save_output=f'results/{name}/{1}_keyword.png')
38
+ keyword_extract(kw_model, 2, save_output=f'results/{name}/{2}_keyword.png')
39
+ keyword_extract(kw_model, 3, save_output=f'results/{name}/{3}_keyword.png')
40
+ outputs.append(Image.open(f'results/{name}/1_keyword.png'))
41
+ outputs.append(Image.open(f'results/{name}/2_keyword.png'))
42
+ outputs.append(Image.open(f'results/{name}/3_keyword.png'))
43
+
44
+ # keywords = kw_model.extract_keywords(descriptions, highlight=True)
45
+ # print(keywords)
46
+
47
+ # run key phrase extraction
48
+ get_top_key_phrases(descriptions, 10, save_output=f'results/{name}/top_keyphrase.png')
49
+ keyphrase_svg = display_key_phrases(descriptions, save_output=f'results/{name}/key_phrase.html')
50
+ outputs.append(Image.open(f'results/{name}/top_keyphrase.png'))
51
+
52
+ outputs += [ner_svg, keyphrase_svg]
53
+
54
+ return outputs
55
+
56
+ demo = gr.Interface(
57
+ fn=greet,
58
+ inputs=[gr.Textbox(lines=1, placeholder="Data Asset Name"),
59
+ gr.Textbox(lines=10, placeholder="All the descriptions")],
60
+ outputs=['image', 'image', 'image', 'image', 'image', 'image', 'image', 'html', 'html'],
61
+ )
62
+ demo.launch()
data.pickle ADDED
Binary file (127 kB). View file
 
description.csv ADDED
The diff for this file is too large to render. See raw diff
 
description.xlsx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0fd2e2f574797aa2d96cffdc5f91c2c86f44dae46238461afbe9cc37445fdfae
3
+ size 5685842
find_similarity.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sentence_transformers import SentenceTransformer, util
2
+ import pandas as pd
3
+ import numpy as np
4
+ import pickle
5
+ from tqdm import tqdm
6
+ from functools import partial
7
+ from multiprocessing import Pool
8
+
9
+ # Load pre-trained model
10
+ model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
11
+
12
+ # Load data
13
+ with open('data.pickle', 'rb') as file:
14
+ data = pickle.load(file)
15
+
16
+ # Define a function to compute similarity for a pair of sentences
17
+ def compute_similarity(model, source_sentence, target_sentence):
18
+ embedding_1 = model.encode(source_sentence, convert_to_tensor=True)
19
+ embedding_2 = model.encode(target_sentence, convert_to_tensor=True)
20
+ similarity = util.pytorch_cos_sim(embedding_1, embedding_2)
21
+ return similarity.item()
22
+
23
+ # Define a function to compute similarities for a given source sentence
24
+ def compute_similarities_for_source(model, source_sentence, data):
25
+ source_index = data.index(source_sentence)
26
+ similarities = [compute_similarity(model,
27
+ source_sentence['description'],
28
+ data[index]['description']) for index in tqdm(range(source_index, len(data)),
29
+ desc=f"Computing similarities for '{source_sentence['description']}'")]
30
+ return similarities
31
+
32
+ # Define a function to compute similarities for all sentences in the data
33
+ def compute_similarities(model, data):
34
+ with Pool() as pool:
35
+ func = partial(compute_similarities_for_source, model)
36
+ similarities = list(tqdm(pool.imap(func, data), total=len(data), desc="Computing similarities"))
37
+ return similarities
38
+
39
+ # Embed sentences and compute similarities
40
+ embeddings = model.encode([source_sentence['description'] for source_sentence in data], convert_to_tensor=True)
41
+ matrix = util.pytorch_cos_sim(embeddings, embeddings).numpy()
42
+
43
+ # Save similarities to CSV file
44
+ pd.DataFrame(matrix, columns=[source_sentence['description'] for source_sentence in data]).to_csv('data.csv', index=False)
keyphrase_extraction.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from textblob import TextBlob
2
+ import spacy
3
+ from spacy import displacy
4
+ import pandas as pd
5
+ import seaborn as sns
6
+ import matplotlib.pyplot as plt
7
+ from pathlib import Path
8
+ import pytextrank
9
+
10
+ # Load the pre-trained NLP model
11
+ nlp = spacy.load("en_core_web_sm")
12
+ nlp.add_pipe('textrank')
13
+
14
+ # Sample text to analyze
15
+ text = """
16
+ Database that collects, administrative, clinical and demographic information on hospital discharges (including deaths, sign-outs and transfers). Some provinces and territories also use the DAD to capture day surgery.
17
+ The discharge abstract database is a database for information on all AHS separations for acute care institutions, including discharges, deaths, sign-outs and transfers.
18
+ Data on discharges, transfers and deaths of in-patients and day surgery patients from acute care hospitals in BC. All Canadian hospitals (except those in Quebec) submit their separations records directly to the Canadian Institute of Health information (CIHI) for inclusion in the Discharge Abstract Database (DAD). The database contains demographic, administrative and clinical data for hospital discharges (inpatient acute, chronic, rehabilitation) and day surgeries. A provincial data set, including various CIHI value-added elements (such as case mix groups, and resource intensity weights) is released on a monthly basis to the respective Ministries of Health. The DAD data files which Population Data BC receives include the CIHI variables. Population Data BC receives these data once per year.
19
+ Health data maintained by Manitoba Health consisting of hospital forms/computerized records containing summaries of demographic and clinical information (e.g., gender, postal code, diagnoses and procedure codes) completed at the point of discharge from the hospital. Several hundred thousand abstracts per year are submitted for all separations from acute and chronic care facilities in Manitoba and for all Manitobans admitted to out-of-province facilities. The Hospital Abstracts Data includes records of both Manitoba residents and non-Manitoba residents hospitalized in Manitoba facilities and information about inpatient and day surgery services.
20
+ Patient discharge information from New Brunswick hospitals. Captures administrative, clinical and demographic information including discharges, deaths, sign-outs, and transfers.
21
+ The Provincial Discharge Abstract Database (PDAD) is the NLCHI dataset that contains demographic, clinical and administrative data collected at hospitals when patients are discharged from inpatient and surgical day care services and submitted to the CIHI Discharge Abstract Database. The PDAD captures information regarding hospitalizations of both residents of NL and non-residents receiving care in NL.
22
+ Contains information on each hospital admission recorded in a Nova Scotia hospital
23
+ The Discharge Abstract Database is a database for information on all separation from acute care institutions within a fiscal year (April 1st to March 31st). Data is received directly from acute care facilities or from their respective health/regional authority or ministry/department of health.
24
+ Captures administrative, clinical and demographic information on discharges for acute care facilities (including deaths, sign-outs and transfers).
25
+
26
+ """
27
+
28
+ def get_top_key_phrases(text, top_n, save_output):
29
+ # Process the text
30
+ doc = nlp(text)
31
+ # show the score of key phrases #
32
+ phrases_ranking = {phrase.text: phrase.rank for phrase in doc._.phrases}
33
+ phrases = list(zip(*phrases_ranking.items()))[0]
34
+ scores = list(zip(*phrases_ranking.items()))[1]
35
+ keyword_df = pd.DataFrame({'words': phrases[:top_n], 'scores': scores[:top_n]})
36
+ plt.figure(figsize=(8, 24))
37
+ sns.catplot(data=keyword_df, x='words', y='scores', kind='bar', palette='blend:#7AB,#EDA', aspect=1.5)
38
+ plt.xticks(rotation=-10, fontsize=6)
39
+ plt.savefig(save_output, dpi=300)
40
+
41
+ def display_key_phrases(text, save_output):
42
+ doc = nlp(text)
43
+ key_phrases = [{'start': chunk.start_char, 'end': chunk.end_char, 'label': str(round(phrase.rank, 2))} for phrase in doc._.phrases for chunk in phrase.chunks]
44
+
45
+ # generate displacy html #
46
+ max_rank = float(key_phrases[0]['label'])
47
+ min_rank = float(key_phrases[-1]['label'])
48
+ step = 50/max_rank
49
+ colors = {str(phrase['label']): f'hsl(121, 100%, {100-float(phrase["label"])*step}%)' for phrase in key_phrases}
50
+ options = {'ents': [color for color in colors.keys()], 'colors': colors}
51
+ # Create a list of spans to highlight
52
+ sentence = [
53
+ {'text': text,
54
+ 'ents': key_phrases,
55
+ 'title': None}
56
+ ]
57
+
58
+ # Create a visualization of the text with highlighted key phrases
59
+ svg = displacy.render(sentence, style="ent", options=options, manual=True, page=True)
60
+ filename = Path(save_output)
61
+ filename.open('w', encoding='utf-8').write(svg)
62
+ return svg
63
+
64
+
65
+ if __name__ == '__main__':
66
+ get_top_key_phrases(text, 10)
67
+ display_key_phrases(text)
keyword_extraction.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from keybert import KeyBERT
2
+ import matplotlib.pyplot as plt
3
+ import pandas as pd
4
+ import seaborn as sns
5
+
6
+ doc = """
7
+ Database that collects, administrative, clinical and demographic information on hospital discharges (including deaths, sign-outs and transfers). Some provinces and territories also use the DAD to capture day surgery.
8
+
9
+
10
+ The discharge abstract database is a database for information on all AHS separations for acute care institutions, including discharges, deaths, sign-outs and transfers.
11
+
12
+
13
+ Data on discharges, transfers and deaths of in-patients and day surgery patients from acute care hospitals in BC. All Canadian hospitals (except those in Quebec) submit their separations records directly to the Canadian Institute of Health information (CIHI) for inclusion in the Discharge Abstract Database (DAD). The database contains demographic, administrative and clinical data for hospital discharges (inpatient acute, chronic, rehabilitation) and day surgeries. A provincial data set, including various CIHI value-added elements (such as case mix groups, and resource intensity weights) is released on a monthly basis to the respective Ministries of Health. The DAD data files which Population Data BC receives include the CIHI variables. Population Data BC receives these data once per year.
14
+
15
+
16
+ Health data maintained by Manitoba Health consisting of hospital forms/computerized records containing summaries of demographic and clinical information (e.g., gender, postal code, diagnoses and procedure codes) completed at the point of discharge from the hospital. Several hundred thousand abstracts per year are submitted for all separations from acute and chronic care facilities in Manitoba and for all Manitobans admitted to out-of-province facilities. The Hospital Abstracts Data includes records of both Manitoba residents and non-Manitoba residents hospitalized in Manitoba facilities and information about inpatient and day surgery services.
17
+
18
+
19
+ Patient discharge information from New Brunswick hospitals. Captures administrative, clinical and demographic information including discharges, deaths, sign-outs, and transfers.
20
+
21
+
22
+ The Provincial Discharge Abstract Database (PDAD) is the NLCHI dataset that contains demographic, clinical and administrative data collected at hospitals when patients are discharged from inpatient and surgical day care services and submitted to the CIHI Discharge Abstract Database. The PDAD captures information regarding hospitalizations of both residents of NL and non-residents receiving care in NL.
23
+
24
+
25
+ Contains information on each hospital admission recorded in a Nova Scotia hospital
26
+
27
+
28
+ The Discharge Abstract Database is a database for information on all separation from acute care institutions within a fiscal year (April 1st to March 31st). Data is received directly from acute care facilities or from their respective health/regional authority or ministry/department of health.
29
+
30
+
31
+ Captures administrative, clinical and demographic information on discharges for acute care facilities (including deaths, sign-outs and transfers).
32
+ """
33
+
34
+ def keyword_extract(kw_model, n_grams, save_output='results/'):
35
+ keyword_onegram = kw_model.extract_keywords(doc, keyphrase_ngram_range=(1, n_grams), stop_words=None)
36
+ words = list(zip(*keyword_onegram))[0]
37
+ scores = list(zip(*keyword_onegram))[1]
38
+ keyword_df = pd.DataFrame({'words': words, 'scores': scores})
39
+ plt.figure(figsize=(8, 24))
40
+ sns.catplot(data=keyword_df, x='words', y='scores', kind='bar', palette='blend:#7AB,#EDA', aspect=1.5)
41
+ plt.xticks(rotation=-10, fontsize=6)
42
+ plt.savefig(save_output, dpi=300)
43
+
44
+ if __name__ == '__main__':
45
+ kw_model = KeyBERT()
46
+ keyword_extract(kw_model, 1)
47
+ keyword_extract(kw_model, 2)
48
+ keyword_extract(kw_model, 3)
49
+ keywords = kw_model.extract_keywords(doc, highlight=True)
50
+ print(keywords)
lda.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import nltk
2
+ from nltk.corpus import stopwords
3
+ from nltk.stem.wordnet import WordNetLemmatizer
4
+ import gensim
5
+ from gensim import corpora
6
+ from gensim.models.ldamodel import LdaModel
7
+
8
+ import pyLDAvis.gensim
9
+ import pickle
10
+ import pyLDAvis
11
+
12
+
13
+
14
+ documents = [
15
+ """
16
+ Database that collects, administrative, clinical and demographic information on hospital discharges (including deaths, sign-outs and transfers). Some provinces and territories also use the DAD to capture day surgery.
17
+ The discharge abstract database is a database for information on all AHS separations for acute care institutions, including discharges, deaths, sign-outs and transfers.
18
+ Data on discharges, transfers and deaths of in-patients and day surgery patients from acute care hospitals in BC. All Canadian hospitals (except those in Quebec) submit their separations records directly to the Canadian Institute of Health information (CIHI) for inclusion in the Discharge Abstract Database (DAD). The database contains demographic, administrative and clinical data for hospital discharges (inpatient acute, chronic, rehabilitation) and day surgeries. A provincial data set, including various CIHI value-added elements (such as case mix groups, and resource intensity weights) is released on a monthly basis to the respective Ministries of Health. The DAD data files which Population Data BC receives include the CIHI variables. Population Data BC receives these data once per year.
19
+ Health data maintained by Manitoba Health consisting of hospital forms/computerized records containing summaries of demographic and clinical information (e.g., gender, postal code, diagnoses and procedure codes) completed at the point of discharge from the hospital. Several hundred thousand abstracts per year are submitted for all separations from acute and chronic care facilities in Manitoba and for all Manitobans admitted to out-of-province facilities. The Hospital Abstracts Data includes records of both Manitoba residents and non-Manitoba residents hospitalized in Manitoba facilities and information about inpatient and day surgery services.
20
+ Patient discharge information from New Brunswick hospitals. Captures administrative, clinical and demographic information including discharges, deaths, sign-outs, and transfers.
21
+ The Provincial Discharge Abstract Database (PDAD) is the NLCHI dataset that contains demographic, clinical and administrative data collected at hospitals when patients are discharged from inpatient and surgical day care services and submitted to the CIHI Discharge Abstract Database. The PDAD captures information regarding hospitalizations of both residents of NL and non-residents receiving care in NL.
22
+ Contains information on each hospital admission recorded in a Nova Scotia hospital
23
+ The Discharge Abstract Database is a database for information on all separation from acute care institutions within a fiscal year (April 1st to March 31st). Data is received directly from acute care facilities or from their respective health/regional authority or ministry/department of health.
24
+ Captures administrative, clinical and demographic information on discharges for acute care facilities (including deaths, sign-outs and transfers).
25
+
26
+ """
27
+ ]
28
+
29
+ def preprocess_text(documents):
30
+ # preprocess text
31
+ stop_words = set(stopwords.words('english'))
32
+ lemmatizer = WordNetLemmatizer()
33
+
34
+ # Tokenize the document
35
+ tokenized_docs = [nltk.word_tokenize(doc.lower()) for doc in documents]
36
+
37
+ # Remove stop words
38
+ filtered_docs = [[word for word in tokenized_doc if word not in stop_words] for tokenized_doc in tokenized_docs]
39
+
40
+ # Lemmatize words
41
+ lemmatized_docs = [[lemmatizer.lemmatize(word) for word in filtered_doc] for filtered_doc in filtered_docs]
42
+
43
+ return lemmatized_docs
44
+
45
+ if __name__ == '__main__':
46
+ preprocessed_docs = preprocess_text(documents)
47
+ # Create a dictionary from the preprocessed document
48
+ dictionary = corpora.Dictionary(preprocessed_docs)
49
+ # Create a bag of words representation of the document
50
+ bow_doc = [dictionary.doc2bow(doc) for doc in preprocessed_docs]
51
+
52
+
53
+ # Set parameters for LDA
54
+ num_topics = 2
55
+ passes = 10
56
+ lda_model = LdaModel(bow_doc, num_topics=num_topics, id2word=dictionary, passes=passes)
57
+
58
+ # pyLDAvis.enable_notebook()
59
+ vis = pyLDAvis.gensim.prepare(lda_model, bow_doc, dictionary=lda_model.id2word)
60
+ pyLDAvis.save_html(vis, './results/ldavis_prepared_'+ str(num_topics) +'.html')
61
+
main.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from keybert import KeyBERT
2
+ import spacy
3
+ import string
4
+ from spacy import displacy
5
+ from pathlib import Path
6
+
7
+ from keyword_extraction import keyword_extract
8
+ from keyphrase_extraction import get_top_key_phrases, display_key_phrases
9
+ from word import show_gram_plot
10
+
11
+ nlp = spacy.load("en_core_web_sm")
12
+
13
+ doc = """
14
+ CIHI
15
+ Database that collects, administrative, clinical and demographic information on hospital discharges (including deaths, sign-outs and transfers). Some provinces and territories also use the DAD to capture day surgery.
16
+
17
+
18
+
19
+ Alberta
20
+ The discharge abstract database is a database for information on all AHS separations for acute care institutions, including discharges, deaths, sign-outs and transfers.
21
+
22
+
23
+
24
+ British Columbia
25
+ Data on discharges, transfers and deaths of in-patients and day surgery patients from acute care hospitals in BC. All Canadian hospitals (except those in Quebec) submit their separations records directly to the Canadian Institute of Health information (CIHI) for inclusion in the Discharge Abstract Database (DAD). The database contains demographic, administrative and clinical data for hospital discharges (inpatient acute, chronic, rehabilitation) and day surgeries. A provincial data set, including various CIHI value-added elements (such as case mix groups, and resource intensity weights) is released on a monthly basis to the respective Ministries of Health. The DAD data files which Population Data BC receives include the CIHI variables. Population Data BC receives these data once per year.
26
+
27
+
28
+
29
+ Manitoba
30
+ Health data maintained by Manitoba Health consisting of hospital forms/computerized records containing summaries of demographic and clinical information (e.g., gender, postal code, diagnoses and procedure codes) completed at the point of discharge from the hospital. Several hundred thousand abstracts per year are submitted for all separations from acute and chronic care facilities in Manitoba and for all Manitobans admitted to out-of-province facilities. The Hospital Abstracts Data includes records of both Manitoba residents and non-Manitoba residents hospitalized in Manitoba facilities and information about inpatient and day surgery services.
31
+
32
+
33
+
34
+ New Brunswick
35
+ Patient discharge information from New Brunswick hospitals. Captures administrative, clinical and demographic information including discharges, deaths, sign-outs, and transfers.
36
+
37
+
38
+
39
+ Newfoundland and Labrador
40
+ The Provincial Discharge Abstract Database (PDAD) is the NLCHI dataset that contains demographic, clinical and administrative data collected at hospitals when patients are discharged from inpatient and surgical day care services and submitted to the CIHI Discharge Abstract Database. The PDAD captures information regarding hospitalizations of both residents of NL and non-residents receiving care in NL.
41
+
42
+
43
+
44
+ Nova Scotia
45
+ Contains information on each hospital admission recorded in a Nova Scotia hospital
46
+
47
+
48
+
49
+ Ontario
50
+ The Discharge Abstract Database is a database for information on all separation from acute care institutions within a fiscal year (April 1st to March 31st). Data is received directly from acute care facilities or from their respective health/regional authority or ministry/department of health.
51
+
52
+
53
+
54
+ Saskatchewan
55
+ Captures administrative, clinical and demographic information on discharges for acute care facilities (including deaths, sign-outs and transfers).
56
+ """
57
+
58
+ doc = doc.translate(str.maketrans('', '', string.punctuation))
59
+
60
+ # run word count
61
+ show_gram_plot(doc, 1, 10, save_output=f'results/DAD/{1}_gram.png')
62
+ show_gram_plot(doc, 2, 10, save_output=f'results/DAD/{2}_gram.png')
63
+ show_gram_plot(doc, 3, 10, save_output=f'results/DAD/{3}_gram.png')
64
+
65
+ # run named entity recognition
66
+ spacy_doc = nlp(doc)
67
+ # Create a visualization of named entities
68
+ svg = displacy.render(spacy_doc, style="ent", jupyter=False, page=True)
69
+ filename = Path('results/DAD/ner.html')
70
+ filename.open('w', encoding='utf-8').write(svg)
71
+
72
+ # run keyword extraction
73
+ kw_model = KeyBERT()
74
+ keyword_extract(kw_model, 1, save_output=f'results/DAD/{1}_keyword.png')
75
+ keyword_extract(kw_model, 2, save_output=f'results/DAD/{2}_keyword.png')
76
+ keyword_extract(kw_model, 3, save_output=f'results/DAD/{3}_keyword.png')
77
+ keywords = kw_model.extract_keywords(doc, highlight=True)
78
+ print(keywords)
79
+
80
+ # run key phrase extraction
81
+ get_top_key_phrases(doc, 10, save_output=f'results/DAD/top_keyphrase.png')
82
+ display_key_phrases(doc, save_output='results/DAD/key_phrase.html')
name.csv ADDED
The diff for this file is too large to render. See raw diff
 
name.xlsx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e3ab8d3ef814a9e9d0478bd489fb82f983738bb64ac50fcc566cad5775af2b3
3
+ size 5823409
named_entity_recognition.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
2
+ from transformers import pipeline
3
+
4
+ import spacy
5
+ from spacy import displacy
6
+
7
+ nlp = spacy.load("en_core_web_sm")
8
+
9
+ example = """
10
+ Database that collects, administrative, clinical and demographic information on hospital discharges (including deaths, sign-outs and transfers). Some provinces and territories also use the DAD to capture day surgery.
11
+ The discharge abstract database is a database for information on all AHS separations for acute care institutions, including discharges, deaths, sign-outs and transfers.
12
+ Data on discharges, transfers and deaths of in-patients and day surgery patients from acute care hospitals in BC. All Canadian hospitals (except those in Quebec) submit their separations records directly to the Canadian Institute of Health information (CIHI) for inclusion in the Discharge Abstract Database (DAD). The database contains demographic, administrative and clinical data for hospital discharges (inpatient acute, chronic, rehabilitation) and day surgeries. A provincial data set, including various CIHI value-added elements (such as case mix groups, and resource intensity weights) is released on a monthly basis to the respective Ministries of Health. The DAD data files which Population Data BC receives include the CIHI variables. Population Data BC receives these data once per year.
13
+ Health data maintained by Manitoba Health consisting of hospital forms/computerized records containing summaries of demographic and clinical information (e.g., gender, postal code, diagnoses and procedure codes) completed at the point of discharge from the hospital. Several hundred thousand abstracts per year are submitted for all separations from acute and chronic care facilities in Manitoba and for all Manitobans admitted to out-of-province facilities. The Hospital Abstracts Data includes records of both Manitoba residents and non-Manitoba residents hospitalized in Manitoba facilities and information about inpatient and day surgery services.
14
+ Patient discharge information from New Brunswick hospitals. Captures administrative, clinical and demographic information including discharges, deaths, sign-outs, and transfers.
15
+ The Provincial Discharge Abstract Database (PDAD) is the NLCHI dataset that contains demographic, clinical and administrative data collected at hospitals when patients are discharged from inpatient and surgical day care services and submitted to the CIHI Discharge Abstract Database. The PDAD captures information regarding hospitalizations of both residents of NL and non-residents receiving care in NL.
16
+ Contains information on each hospital admission recorded in a Nova Scotia hospital
17
+ The Discharge Abstract Database is a database for information on all separation from acute care institutions within a fiscal year (April 1st to March 31st). Data is received directly from acute care facilities or from their respective health/regional authority or ministry/department of health.
18
+ Captures administrative, clinical and demographic information on discharges for acute care facilities (including deaths, sign-outs and transfers).
19
+
20
+ """
21
+
22
+ doc = nlp(example)
23
+ # Create a visualization of named entities
24
+ displacy.serve(doc, style="ent")
read_sheet.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ import pandas as pd
3
+
4
+ # read an Excel file into a Pandas dataframe
5
+ xls = pd.read_excel('description.xlsx', sheet_name='likely_similar', engine='openpyxl')
6
+ xls.iloc[:, 1:] # select all rows and all columns starting from the second column
7
+
8
+ # get the names of the source databases from the dataframe
9
+ source_databases = xls.iloc[:, 1:].columns
10
+
11
+ # create a dictionary to hold the similarity data
12
+ similarity_dict = {}
13
+
14
+ # loop through each source database and get the list of similar databases
15
+ for source_database in source_databases:
16
+ series = xls.loc[:, source_database]
17
+ similar_databases = series[series != False].values.tolist()
18
+ similarity_dict[source_database] = similar_databases
19
+
20
+ # find the length of the longest list
21
+ max_len = max(len(v) for v in similarity_dict.values())
22
+
23
+ # pad the shorter lists with NaNs to make them the same length as the longest list
24
+ for k, v in similarity_dict.items():
25
+ if len(v) < max_len:
26
+ similarity_dict[k] = v + [float('nan')] * (max_len - len(v))
27
+
28
+ # convert the dictionary to a Pandas dataframe and transpose it
29
+ df = pd.DataFrame.from_dict(similarity_dict)
30
+ df = df.transpose()
31
+
32
+ # write the dataframe to a CSV file
33
+ df.to_csv('similarity_dict.csv', index=False)
requirements.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gensim==4.3.1
2
+ gradio==3.27.0
3
+ keybert==0.7.0
4
+ matplotlib==3.7.1
5
+ nltk==3.8.1
6
+ numpy==1.23.5
7
+ pandas==2.0.0
8
+ Pillow==9.5.0
9
+ Pillow==9.5.0
10
+ pyLDAvis==3.4.0
11
+ pyLDAvis==3.4.1
12
+ pytextrank==3.2.4
13
+ seaborn==0.12.2
14
+ selenium==4.9.0
15
+ sentence_transformers==2.2.2
16
+ spacy==3.5.2
17
+ textblob==0.17.1
18
+ tqdm==4.65.0
19
+ transformers==4.28.1
20
+ wordcloud==1.8.2.2
results/DAD.zip ADDED
Binary file (499 kB). View file
 
results/DAD/1_gram.png ADDED
results/DAD/1_keyword.png ADDED
results/DAD/2_gram.png ADDED
results/DAD/2_keyword.png ADDED
results/DAD/3_gram.png ADDED
results/DAD/3_keyword.png ADDED
results/DAD/key_phrase.html ADDED
@@ -0,0 +1,800 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="en">
3
+ <head>
4
+ <title>displaCy</title>
5
+ </head>
6
+
7
+ <body style="font-size: 16px; font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol'; padding: 4rem 2rem; direction: ltr">
8
+ <figure style="margin-bottom: 6rem">
9
+ <div class="entities" style="line-height: 2.5; direction: ltr">
10
+ <mark class="entity" style="background: hsl(121, 100%, 81.81818181818181%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
11
+ CIHI
12
+ Database
13
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.04</span>
14
+ </mark>
15
+
16
+ <mark class="entity" style="background: hsl(121, 100%, 100.0%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
17
+ that
18
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.0</span>
19
+ </mark>
20
+ collects
21
+ <mark class="entity" style="background: hsl(121, 100%, 68.18181818181817%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
22
+ administrative clinical and demographic information
23
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.07</span>
24
+ </mark>
25
+ on
26
+ <mark class="entity" style="background: hsl(121, 100%, 50.0%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
27
+ hospital discharges
28
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.11</span>
29
+ </mark>
30
+ including
31
+ <mark class="entity" style="background: hsl(121, 100%, 68.18181818181817%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
32
+ deaths signouts
33
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.07</span>
34
+ </mark>
35
+ and transfers
36
+ <mark class="entity" style="background: hsl(121, 100%, 95.45454545454545%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
37
+ Some provinces
38
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.01</span>
39
+ </mark>
40
+ and
41
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
42
+ territories
43
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
44
+ </mark>
45
+ also use
46
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
47
+ the DAD
48
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
49
+ </mark>
50
+
51
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
52
+ DAD
53
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
54
+ </mark>
55
+ to capture
56
+ <mark class="entity" style="background: hsl(121, 100%, 77.27272727272727%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
57
+ day surgery
58
+
59
+
60
+
61
+ Alberta
62
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.05</span>
63
+ </mark>
64
+
65
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
66
+ Alberta
67
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
68
+ </mark>
69
+ </br>
70
+ <mark class="entity" style="background: hsl(121, 100%, 77.27272727272727%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
71
+ The discharge abstract database
72
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.05</span>
73
+ </mark>
74
+ is
75
+ <mark class="entity" style="background: hsl(121, 100%, 90.9090909090909%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
76
+ a database
77
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.02</span>
78
+ </mark>
79
+ for
80
+ <mark class="entity" style="background: hsl(121, 100%, 59.09090909090909%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
81
+ information
82
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.09</span>
83
+ </mark>
84
+ on
85
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
86
+ all AHS separations
87
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
88
+ </mark>
89
+
90
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
91
+ AHS
92
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
93
+ </mark>
94
+ separations for
95
+ <mark class="entity" style="background: hsl(121, 100%, 59.09090909090909%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
96
+ acute care institutions
97
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.09</span>
98
+ </mark>
99
+ including
100
+ <mark class="entity" style="background: hsl(121, 100%, 54.54545454545454%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
101
+ discharges deaths signouts
102
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.1</span>
103
+ </mark>
104
+ and
105
+ <mark class="entity" style="background: hsl(121, 100%, 81.81818181818181%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
106
+ transfers
107
+
108
+
109
+
110
+ British Columbia
111
+ Data
112
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.04</span>
113
+ </mark>
114
+
115
+ <mark class="entity" style="background: hsl(121, 100%, 81.81818181818181%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
116
+ British Columbia
117
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.04</span>
118
+ </mark>
119
+ </br>Data on
120
+ <mark class="entity" style="background: hsl(121, 100%, 59.09090909090909%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
121
+ discharges transfers
122
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.09</span>
123
+ </mark>
124
+ and
125
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
126
+ deaths
127
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
128
+ </mark>
129
+ of
130
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
131
+ inpatients
132
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
133
+ </mark>
134
+ and
135
+ <mark class="entity" style="background: hsl(121, 100%, 63.63636363636363%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
136
+ day surgery patients
137
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.08</span>
138
+ </mark>
139
+ from
140
+ <mark class="entity" style="background: hsl(121, 100%, 50.0%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
141
+ acute care hospitals
142
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.11</span>
143
+ </mark>
144
+ in
145
+ <mark class="entity" style="background: hsl(121, 100%, 77.27272727272727%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
146
+ BC
147
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.05</span>
148
+ </mark>
149
+
150
+ <mark class="entity" style="background: hsl(121, 100%, 77.27272727272727%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
151
+ BC
152
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.05</span>
153
+ </mark>
154
+
155
+ <mark class="entity" style="background: hsl(121, 100%, 77.27272727272727%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
156
+ All Canadian hospitals
157
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.05</span>
158
+ </mark>
159
+
160
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
161
+ Canadian
162
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
163
+ </mark>
164
+ hospitals except
165
+ <mark class="entity" style="background: hsl(121, 100%, 100.0%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
166
+ those
167
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.0</span>
168
+ </mark>
169
+ in
170
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
171
+ Quebec
172
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
173
+ </mark>
174
+
175
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
176
+ Quebec
177
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
178
+ </mark>
179
+ submit
180
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
181
+ their separations
182
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
183
+ </mark>
184
+
185
+ <mark class="entity" style="background: hsl(121, 100%, 77.27272727272727%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
186
+ records
187
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.05</span>
188
+ </mark>
189
+ directly to
190
+ <mark class="entity" style="background: hsl(121, 100%, 77.27272727272727%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
191
+ the Canadian Institute of Health information CIHI
192
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.05</span>
193
+ </mark>
194
+
195
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
196
+ Health
197
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
198
+ </mark>
199
+ information CIHI for
200
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
201
+ inclusion
202
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
203
+ </mark>
204
+ in
205
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
206
+ the Discharge Abstract Database DAD
207
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
208
+ </mark>
209
+
210
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
211
+ the Discharge Abstract Database DAD
212
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
213
+ </mark>
214
+
215
+ <mark class="entity" style="background: hsl(121, 100%, 90.9090909090909%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
216
+ The database
217
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.02</span>
218
+ </mark>
219
+ contains
220
+ <mark class="entity" style="background: hsl(121, 100%, 68.18181818181817%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
221
+ demographic administrative and clinical data
222
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.07</span>
223
+ </mark>
224
+ for
225
+ <mark class="entity" style="background: hsl(121, 100%, 50.0%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
226
+ hospital discharges
227
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.11</span>
228
+ </mark>
229
+ inpatient
230
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
231
+ acute chronic rehabilitation and day surgeries
232
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
233
+ </mark>
234
+
235
+ <mark class="entity" style="background: hsl(121, 100%, 81.81818181818181%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
236
+ A provincial data
237
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.04</span>
238
+ </mark>
239
+ set including
240
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
241
+ various CIHI valueadded elements
242
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
243
+ </mark>
244
+
245
+ <mark class="entity" style="background: hsl(121, 100%, 77.27272727272727%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
246
+ CIHI
247
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.05</span>
248
+ </mark>
249
+ valueadded elements such as
250
+ <mark class="entity" style="background: hsl(121, 100%, 77.27272727272727%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
251
+ case mix groups
252
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.05</span>
253
+ </mark>
254
+ and
255
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
256
+ resource intensity weights
257
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
258
+ </mark>
259
+ is released on
260
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
261
+ a monthly basis
262
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
263
+ </mark>
264
+
265
+ <mark class="entity" style="background: hsl(121, 100%, 81.81818181818181%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
266
+ monthly
267
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.04</span>
268
+ </mark>
269
+ basis to the respective
270
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
271
+ Ministries of Health The DAD
272
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
273
+ </mark>
274
+
275
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
276
+ Health
277
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
278
+ </mark>
279
+ The DAD data files
280
+ <mark class="entity" style="background: hsl(121, 100%, 100.0%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
281
+ which
282
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.0</span>
283
+ </mark>
284
+
285
+ <mark class="entity" style="background: hsl(121, 100%, 63.63636363636363%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
286
+ Population Data BC
287
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.08</span>
288
+ </mark>
289
+ receives include
290
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
291
+ the CIHI variables
292
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
293
+ </mark>
294
+
295
+ <mark class="entity" style="background: hsl(121, 100%, 63.63636363636363%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
296
+ Population Data BC
297
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.08</span>
298
+ </mark>
299
+
300
+ <mark class="entity" style="background: hsl(121, 100%, 63.63636363636363%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
301
+ Population Data BC
302
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.08</span>
303
+ </mark>
304
+ receives
305
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
306
+ these data
307
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
308
+ </mark>
309
+ once per
310
+ <mark class="entity" style="background: hsl(121, 100%, 77.27272727272727%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
311
+ year
312
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.05</span>
313
+ </mark>
314
+ </br></br></br></br>
315
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
316
+ Manitoba
317
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
318
+ </mark>
319
+ </br>Health data maintained by
320
+ <mark class="entity" style="background: hsl(121, 100%, 63.63636363636363%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
321
+ Manitoba Health
322
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.08</span>
323
+ </mark>
324
+
325
+ <mark class="entity" style="background: hsl(121, 100%, 63.63636363636363%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
326
+ Manitoba Health
327
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.08</span>
328
+ </mark>
329
+ consisting of
330
+ <mark class="entity" style="background: hsl(121, 100%, 59.09090909090909%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
331
+ hospital formscomputerized records
332
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.09</span>
333
+ </mark>
334
+ containing
335
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
336
+ summaries
337
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
338
+ </mark>
339
+ of demographic and clinical information
340
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
341
+ eg gender postal code
342
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
343
+ </mark>
344
+ diagnoses and
345
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
346
+ procedure codes
347
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
348
+ </mark>
349
+ completed at
350
+ <mark class="entity" style="background: hsl(121, 100%, 90.9090909090909%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
351
+ the point
352
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.02</span>
353
+ </mark>
354
+ of
355
+ <mark class="entity" style="background: hsl(121, 100%, 63.63636363636363%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
356
+ discharge
357
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.08</span>
358
+ </mark>
359
+ from
360
+ <mark class="entity" style="background: hsl(121, 100%, 81.81818181818181%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
361
+ the hospital
362
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.04</span>
363
+ </mark>
364
+
365
+ <mark class="entity" style="background: hsl(121, 100%, 95.45454545454545%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
366
+ Several hundred thousand
367
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.01</span>
368
+ </mark>
369
+
370
+ <mark class="entity" style="background: hsl(121, 100%, 90.9090909090909%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
371
+ Several hundred thousand abstracts
372
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.02</span>
373
+ </mark>
374
+ per
375
+ <mark class="entity" style="background: hsl(121, 100%, 77.27272727272727%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
376
+ year
377
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.05</span>
378
+ </mark>
379
+ are submitted for
380
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
381
+ all separations
382
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
383
+ </mark>
384
+ from
385
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
386
+ acute and chronic care facilities
387
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
388
+ </mark>
389
+ in
390
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
391
+ Manitoba
392
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
393
+ </mark>
394
+
395
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
396
+ Manitoba
397
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
398
+ </mark>
399
+ and for
400
+ <mark class="entity" style="background: hsl(121, 100%, 95.45454545454545%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
401
+ all Manitobans
402
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.01</span>
403
+ </mark>
404
+
405
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
406
+ Manitobans
407
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
408
+ </mark>
409
+ admitted to
410
+ <mark class="entity" style="background: hsl(121, 100%, 68.18181818181817%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
411
+ outofprovince facilities
412
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.07</span>
413
+ </mark>
414
+
415
+ <mark class="entity" style="background: hsl(121, 100%, 81.81818181818181%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
416
+ The Hospital Abstracts Data
417
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.04</span>
418
+ </mark>
419
+
420
+ <mark class="entity" style="background: hsl(121, 100%, 81.81818181818181%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
421
+ The Hospital Abstracts Data
422
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.04</span>
423
+ </mark>
424
+ includes
425
+ <mark class="entity" style="background: hsl(121, 100%, 77.27272727272727%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
426
+ records
427
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.05</span>
428
+ </mark>
429
+ of
430
+ <mark class="entity" style="background: hsl(121, 100%, 81.81818181818181%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
431
+ both Manitoba residents
432
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.04</span>
433
+ </mark>
434
+
435
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
436
+ Manitoba
437
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
438
+ </mark>
439
+ residents and
440
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
441
+ nonManitoba
442
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
443
+ </mark>
444
+
445
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
446
+ nonManitoba residents
447
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
448
+ </mark>
449
+ hospitalized in
450
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
451
+ Manitoba
452
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
453
+ </mark>
454
+
455
+ <mark class="entity" style="background: hsl(121, 100%, 63.63636363636363%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
456
+ Manitoba facilities
457
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.08</span>
458
+ </mark>
459
+ and
460
+ <mark class="entity" style="background: hsl(121, 100%, 59.09090909090909%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
461
+ information
462
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.09</span>
463
+ </mark>
464
+ about
465
+ <mark class="entity" style="background: hsl(121, 100%, 81.81818181818181%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
466
+ inpatient and day surgery services
467
+
468
+
469
+
470
+ New Brunswick
471
+ Patient
472
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.04</span>
473
+ </mark>
474
+
475
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
476
+ New Brunswick
477
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
478
+ </mark>
479
+ </br>Patient
480
+ <mark class="entity" style="background: hsl(121, 100%, 50.0%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
481
+ discharge information
482
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.11</span>
483
+ </mark>
484
+ from
485
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
486
+ New Brunswick
487
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
488
+ </mark>
489
+
490
+ <mark class="entity" style="background: hsl(121, 100%, 59.09090909090909%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
491
+ New Brunswick hospitals
492
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.09</span>
493
+ </mark>
494
+
495
+ <mark class="entity" style="background: hsl(121, 100%, 77.27272727272727%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
496
+ Captures
497
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.05</span>
498
+ </mark>
499
+
500
+ <mark class="entity" style="background: hsl(121, 100%, 77.27272727272727%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
501
+ Captures
502
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.05</span>
503
+ </mark>
504
+
505
+ <mark class="entity" style="background: hsl(121, 100%, 68.18181818181817%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
506
+ administrative clinical and demographic information
507
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.07</span>
508
+ </mark>
509
+ including
510
+ <mark class="entity" style="background: hsl(121, 100%, 54.54545454545454%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
511
+ discharges deaths signouts
512
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.1</span>
513
+ </mark>
514
+ and
515
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
516
+ transfers
517
+
518
+
519
+
520
+ Newfoundland
521
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
522
+ </mark>
523
+
524
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
525
+ Newfoundland
526
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
527
+ </mark>
528
+ and
529
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
530
+ Labrador
531
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
532
+ </mark>
533
+
534
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
535
+ Labrador
536
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
537
+ </mark>
538
+ </br>
539
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
540
+ The Provincial Discharge Abstract Database
541
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
542
+ </mark>
543
+
544
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
545
+ The Provincial Discharge Abstract Database
546
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
547
+ </mark>
548
+
549
+ <mark class="entity" style="background: hsl(121, 100%, 81.81818181818181%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
550
+ PDAD
551
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.04</span>
552
+ </mark>
553
+ is
554
+ <mark class="entity" style="background: hsl(121, 100%, 90.9090909090909%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
555
+ the NLCHI dataset
556
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.02</span>
557
+ </mark>
558
+
559
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
560
+ NLCHI
561
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
562
+ </mark>
563
+ dataset
564
+ <mark class="entity" style="background: hsl(121, 100%, 100.0%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
565
+ that
566
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.0</span>
567
+ </mark>
568
+ contains
569
+ <mark class="entity" style="background: hsl(121, 100%, 68.18181818181817%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
570
+ demographic clinical and administrative data
571
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.07</span>
572
+ </mark>
573
+ collected at
574
+ <mark class="entity" style="background: hsl(121, 100%, 59.09090909090909%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
575
+ hospitals
576
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.09</span>
577
+ </mark>
578
+ when
579
+ <mark class="entity" style="background: hsl(121, 100%, 81.81818181818181%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
580
+ patients
581
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.04</span>
582
+ </mark>
583
+ are discharged from
584
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
585
+ inpatient and surgical day care services
586
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
587
+ </mark>
588
+ and submitted to
589
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
590
+ the CIHI Discharge Abstract Database
591
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
592
+ </mark>
593
+
594
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
595
+ the CIHI Discharge Abstract Database
596
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
597
+ </mark>
598
+
599
+ <mark class="entity" style="background: hsl(121, 100%, 90.9090909090909%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
600
+ The PDAD
601
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.02</span>
602
+ </mark>
603
+
604
+ <mark class="entity" style="background: hsl(121, 100%, 81.81818181818181%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
605
+ PDAD
606
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.04</span>
607
+ </mark>
608
+ captures
609
+ <mark class="entity" style="background: hsl(121, 100%, 59.09090909090909%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
610
+ information
611
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.09</span>
612
+ </mark>
613
+ regarding
614
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
615
+ hospitalizations
616
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
617
+ </mark>
618
+ of
619
+ <mark class="entity" style="background: hsl(121, 100%, 90.9090909090909%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
620
+ both residents
621
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.02</span>
622
+ </mark>
623
+ of
624
+ <mark class="entity" style="background: hsl(121, 100%, 81.81818181818181%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
625
+ NL
626
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.04</span>
627
+ </mark>
628
+
629
+ <mark class="entity" style="background: hsl(121, 100%, 81.81818181818181%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
630
+ NL
631
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.04</span>
632
+ </mark>
633
+ and
634
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
635
+ nonresidents
636
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
637
+ </mark>
638
+ receiving
639
+ <mark class="entity" style="background: hsl(121, 100%, 63.63636363636363%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
640
+ care
641
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.08</span>
642
+ </mark>
643
+ in
644
+ <mark class="entity" style="background: hsl(121, 100%, 81.81818181818181%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
645
+ NL
646
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.04</span>
647
+ </mark>
648
+
649
+ <mark class="entity" style="background: hsl(121, 100%, 81.81818181818181%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
650
+ NL
651
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.04</span>
652
+ </mark>
653
+ </br></br></br></br>
654
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
655
+ Nova Scotia
656
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
657
+ </mark>
658
+
659
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
660
+ Nova Scotia
661
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
662
+ </mark>
663
+ </br>Contains
664
+ <mark class="entity" style="background: hsl(121, 100%, 59.09090909090909%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
665
+ information
666
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.09</span>
667
+ </mark>
668
+ on
669
+ <mark class="entity" style="background: hsl(121, 100%, 77.27272727272727%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
670
+ each hospital admission
671
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.05</span>
672
+ </mark>
673
+ recorded in
674
+ <mark class="entity" style="background: hsl(121, 100%, 81.81818181818181%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
675
+ a Nova Scotia hospital
676
+
677
+
678
+
679
+ Ontario
680
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.04</span>
681
+ </mark>
682
+
683
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
684
+ Nova Scotia
685
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
686
+ </mark>
687
+ hospital</br></br></br></br>
688
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
689
+ Ontario
690
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
691
+ </mark>
692
+ </br>
693
+ <mark class="entity" style="background: hsl(121, 100%, 77.27272727272727%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
694
+ The Discharge Abstract Database
695
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.05</span>
696
+ </mark>
697
+
698
+ <mark class="entity" style="background: hsl(121, 100%, 77.27272727272727%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
699
+ The Discharge Abstract Database
700
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.05</span>
701
+ </mark>
702
+ is
703
+ <mark class="entity" style="background: hsl(121, 100%, 90.9090909090909%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
704
+ a database
705
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.02</span>
706
+ </mark>
707
+ for
708
+ <mark class="entity" style="background: hsl(121, 100%, 59.09090909090909%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
709
+ information
710
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.09</span>
711
+ </mark>
712
+ on
713
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
714
+ all separation
715
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
716
+ </mark>
717
+ from
718
+ <mark class="entity" style="background: hsl(121, 100%, 59.09090909090909%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
719
+ acute care institutions
720
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.09</span>
721
+ </mark>
722
+ within
723
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
724
+ a fiscal year
725
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
726
+ </mark>
727
+
728
+ <mark class="entity" style="background: hsl(121, 100%, 81.81818181818181%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
729
+ a fiscal year April 1st to March 31st
730
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.04</span>
731
+ </mark>
732
+
733
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
734
+ March 31st
735
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
736
+ </mark>
737
+
738
+ <mark class="entity" style="background: hsl(121, 100%, 72.72727272727272%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
739
+ Data
740
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.06</span>
741
+ </mark>
742
+ is received directly from
743
+ <mark class="entity" style="background: hsl(121, 100%, 54.54545454545454%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
744
+ acute care facilities
745
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.1</span>
746
+ </mark>
747
+ or from
748
+ <mark class="entity" style="background: hsl(121, 100%, 86.36363636363636%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
749
+ their respective healthregional authority
750
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.03</span>
751
+ </mark>
752
+ or
753
+ <mark class="entity" style="background: hsl(121, 100%, 81.81818181818181%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
754
+ ministrydepartment
755
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.04</span>
756
+ </mark>
757
+ of
758
+ <mark class="entity" style="background: hsl(121, 100%, 77.27272727272727%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
759
+ health
760
+
761
+
762
+
763
+ Saskatchewan
764
+ Captures administrative clinical and demographic information
765
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.05</span>
766
+ </mark>
767
+
768
+ <mark class="entity" style="background: hsl(121, 100%, 81.81818181818181%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
769
+ Saskatchewan
770
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.04</span>
771
+ </mark>
772
+ </br>
773
+ <mark class="entity" style="background: hsl(121, 100%, 77.27272727272727%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
774
+ Captures
775
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.05</span>
776
+ </mark>
777
+ administrative clinical and demographic information on
778
+ <mark class="entity" style="background: hsl(121, 100%, 63.63636363636363%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
779
+ discharges
780
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.08</span>
781
+ </mark>
782
+ for
783
+ <mark class="entity" style="background: hsl(121, 100%, 54.54545454545454%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
784
+ acute care facilities
785
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.1</span>
786
+ </mark>
787
+ including
788
+ <mark class="entity" style="background: hsl(121, 100%, 68.18181818181817%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
789
+ deaths signouts
790
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.07</span>
791
+ </mark>
792
+ and
793
+ <mark class="entity" style="background: hsl(121, 100%, 77.27272727272727%); padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
794
+ transfers
795
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">0.05</span>
796
+ </mark>
797
+ </br></div>
798
+ </figure>
799
+ </body>
800
+ </html>
results/DAD/ner.html ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="en">
3
+ <head>
4
+ <title>displaCy</title>
5
+ </head>
6
+
7
+ <body style="font-size: 16px; font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol'; padding: 4rem 2rem; direction: ltr">
8
+ <figure style="margin-bottom: 6rem">
9
+ <div class="entities" style="line-height: 2.5; direction: ltr">CIHI</br>Database that collects administrative clinical and demographic information on hospital discharges including deaths signouts and transfers Some provinces and territories also use the
10
+ <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
11
+ DAD
12
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORG</span>
13
+ </mark>
14
+ to capture day surgery</br></br></br></br>
15
+ <mark class="entity" style="background: #feca74; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
16
+ Alberta
17
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">GPE</span>
18
+ </mark>
19
+ </br>The discharge abstract database is a database for information on all
20
+ <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
21
+ AHS
22
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORG</span>
23
+ </mark>
24
+ separations for acute care institutions including discharges deaths signouts and transfers</br></br></br></br>
25
+ <mark class="entity" style="background: #feca74; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
26
+ British Columbia
27
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">GPE</span>
28
+ </mark>
29
+ </br>Data on discharges transfers and deaths of inpatients and day surgery patients from acute care hospitals in
30
+ <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
31
+ BC
32
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORG</span>
33
+ </mark>
34
+ All
35
+ <mark class="entity" style="background: #c887fb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
36
+ Canadian
37
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">NORP</span>
38
+ </mark>
39
+ hospitals except those in
40
+ <mark class="entity" style="background: #feca74; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
41
+ Quebec
42
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">GPE</span>
43
+ </mark>
44
+ submit their separations records directly to
45
+ <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
46
+ the Canadian Institute of Health information CIHI
47
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORG</span>
48
+ </mark>
49
+ for inclusion in
50
+ <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
51
+ the Discharge Abstract Database DAD
52
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORG</span>
53
+ </mark>
54
+ The database contains demographic administrative and clinical data for hospital discharges inpatient acute chronic rehabilitation and day surgeries A provincial data set including various
55
+ <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
56
+ CIHI
57
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORG</span>
58
+ </mark>
59
+ valueadded elements such as case mix groups and resource intensity weights is released on a
60
+ <mark class="entity" style="background: #bfe1d9; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
61
+ monthly
62
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">DATE</span>
63
+ </mark>
64
+ basis to the respective
65
+ <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
66
+ Ministries of Health The DAD
67
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORG</span>
68
+ </mark>
69
+ data files which
70
+ <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
71
+ Population Data BC
72
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORG</span>
73
+ </mark>
74
+ receives include the CIHI variables
75
+ <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
76
+ Population Data BC
77
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORG</span>
78
+ </mark>
79
+ receives these data once per year</br></br></br></br>
80
+ <mark class="entity" style="background: #feca74; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
81
+ Manitoba
82
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">GPE</span>
83
+ </mark>
84
+ </br>Health data maintained by
85
+ <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
86
+ Manitoba Health
87
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORG</span>
88
+ </mark>
89
+ consisting of hospital formscomputerized records containing summaries of demographic and clinical information eg gender postal code diagnoses and procedure codes completed at the point of discharge from the hospital
90
+ <mark class="entity" style="background: #e4e7d2; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
91
+ Several hundred thousand
92
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">CARDINAL</span>
93
+ </mark>
94
+ abstracts per year are submitted for all separations from acute and chronic care facilities in
95
+ <mark class="entity" style="background: #feca74; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
96
+ Manitoba
97
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">GPE</span>
98
+ </mark>
99
+ and for all
100
+ <mark class="entity" style="background: #c887fb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
101
+ Manitobans
102
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">NORP</span>
103
+ </mark>
104
+ admitted to outofprovince facilities
105
+ <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
106
+ The Hospital Abstracts Data
107
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORG</span>
108
+ </mark>
109
+ includes records of both
110
+ <mark class="entity" style="background: #feca74; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
111
+ Manitoba
112
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">GPE</span>
113
+ </mark>
114
+ residents and
115
+ <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
116
+ nonManitoba
117
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORG</span>
118
+ </mark>
119
+ residents hospitalized in
120
+ <mark class="entity" style="background: #feca74; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
121
+ Manitoba
122
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">GPE</span>
123
+ </mark>
124
+ facilities and information about inpatient and day surgery services</br></br></br></br>
125
+ <mark class="entity" style="background: #feca74; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
126
+ New Brunswick
127
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">GPE</span>
128
+ </mark>
129
+ </br>Patient discharge information from
130
+ <mark class="entity" style="background: #feca74; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
131
+ New Brunswick
132
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">GPE</span>
133
+ </mark>
134
+ hospitals
135
+ <mark class="entity" style="background: #aa9cfc; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
136
+ Captures
137
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">PERSON</span>
138
+ </mark>
139
+ administrative clinical and demographic information including discharges deaths signouts and transfers</br></br></br></br>
140
+ <mark class="entity" style="background: #feca74; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
141
+ Newfoundland
142
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">GPE</span>
143
+ </mark>
144
+ and
145
+ <mark class="entity" style="background: #feca74; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
146
+ Labrador
147
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">GPE</span>
148
+ </mark>
149
+ </br>
150
+ <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
151
+ The Provincial Discharge Abstract Database
152
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORG</span>
153
+ </mark>
154
+ PDAD is the
155
+ <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
156
+ NLCHI
157
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORG</span>
158
+ </mark>
159
+ dataset that contains demographic clinical and administrative data collected at hospitals when patients are discharged from inpatient and surgical day care services and submitted to
160
+ <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
161
+ the CIHI Discharge Abstract Database
162
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORG</span>
163
+ </mark>
164
+ The
165
+ <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
166
+ PDAD
167
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORG</span>
168
+ </mark>
169
+ captures information regarding hospitalizations of both residents of
170
+ <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
171
+ NL
172
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORG</span>
173
+ </mark>
174
+ and nonresidents receiving care in
175
+ <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
176
+ NL
177
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORG</span>
178
+ </mark>
179
+ </br></br></br></br>
180
+ <mark class="entity" style="background: #9cc9cc; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
181
+ Nova Scotia
182
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">FAC</span>
183
+ </mark>
184
+ </br>Contains information on each hospital admission recorded in a
185
+ <mark class="entity" style="background: #9cc9cc; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
186
+ Nova Scotia
187
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">FAC</span>
188
+ </mark>
189
+ hospital</br></br></br></br>
190
+ <mark class="entity" style="background: #feca74; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
191
+ Ontario
192
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">GPE</span>
193
+ </mark>
194
+ </br>
195
+ <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
196
+ The Discharge Abstract Database
197
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORG</span>
198
+ </mark>
199
+ is a database for information on all separation from acute care institutions within
200
+ <mark class="entity" style="background: #bfe1d9; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
201
+ a fiscal year April 1st to March 31st
202
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">DATE</span>
203
+ </mark>
204
+ Data is received directly from acute care facilities or from their respective healthregional authority or ministrydepartment of health</br></br></br></br>
205
+ <mark class="entity" style="background: #feca74; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
206
+ Saskatchewan
207
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">GPE</span>
208
+ </mark>
209
+ </br>
210
+ <mark class="entity" style="background: #aa9cfc; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
211
+ Captures
212
+ <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">PERSON</span>
213
+ </mark>
214
+ administrative clinical and demographic information on discharges for acute care facilities including deaths signouts and transfers</br></div>
215
+ </figure>
216
+ </body>
217
+ </html>
results/DAD/top_keyphrase.png ADDED
results/ldavis_prepared_2.html ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/bmabey/[email protected]/pyLDAvis/js/ldavis.v1.0.0.css">
3
+
4
+
5
+ <div id="ldavis_el573620783883092324287242648" style="background-color:white;"></div>
6
+ <script type="text/javascript">
7
+
8
+ var ldavis_el573620783883092324287242648_data = {"mdsDat": {"x": [0.030816463372300994, -0.030816463372300994], "y": [0.0, 0.0], "topics": [1, 2], "cluster": [1, 1], "Freq": [65.01767591682798, 34.982324083172024]}, "tinfo": {"Term": [",", "information", "management", "mi", "service", "timely", "facilitate", "historical", "effective", "practice", "enabling", "inter-regional", "accounting", "standardized", "developed", "definition", "manitoba", "care", "system", "chronic", "personal", "home", "money", "rehab", "range", "account", "summarized", "aggregate", "community", "provided", "financial", "ontario", "hospital", "submission", "individual", "better", "decision", "federal", "undergo", "jurisdiction", "national", "required", "hierarchical", "reporting", "standard", "balance", "micro", "portfolio", "lacking", "input", "mis/ohrs", "indicator", "clinical", "chart", "stage", "macro", "summary", "within", "annual", "serve", ".", "statistical", "(", "data", "health", ")", ",", "service", "care", "information", "acute", "spent", "contain", "timely", "facilitate", "historical", "effective", "practice", "enabling", "inter-regional", "accounting", "standardized", "developed", "definition", "manitoba", "management", "mi", "information", "system", "chronic", "personal", "home", "money", "rehab", "range", "account", "summarized", "aggregate", "service", "community", "provided", "comparison", "care", ",", ".", ")", "health", "data", "(", "hospital", "including", "contain", "spent", "statistical", "acute"], "Freq": [11.0, 3.0, 2.0, 2.0, 4.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 3.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.48772570667277, 1.777720998732102, 3.206470734999531, 1.0677701812416776, 1.0677413607078479, 1.067657267917359, 1.0676081150891155, 1.0676065358817826, 1.0675802815598692, 1.0675653777906629, 1.067540801376541, 1.0675174093679192, 1.0674962874698386, 1.0674767447790914, 1.067466776032801, 1.067450490457178, 1.0673923558872274, 1.0673265226815278, 1.0672832918807835, 1.067266808904244, 1.0672223936979999, 1.0671601137087998, 1.0671159946039306, 1.067096353212725, 1.0670936883003503, 1.0670556886238969, 1.0670416731588155, 1.0670151227355273, 1.066998343657613, 1.0669531388477023, 3.9143942450760574, 2.4947673921711715, 2.491659314738666, 2.4916083853021727, 2.4908967549976837, 2.490431875838995, 6.736926119237207, 2.4886718492662276, 1.77841683696326, 1.7705727167387144, 1.067912704703492, 1.0674707240511339, 1.0674362775911799, 0.8506167673650525, 0.8506138465835046, 0.8505838952963586, 0.8505766198950484, 0.8505604228337371, 0.8505534660631412, 0.8505410925704019, 0.8505378000530206, 0.8505370565813538, 0.8505298873902817, 0.8504766229558715, 0.8504340857555099, 1.4251142116852946, 1.424895524805034, 1.9966628349547573, 0.8558216000834447, 0.8557477308628418, 0.8554772133863854, 0.854953490702284, 0.854898526904064, 0.8547703311466699, 0.8547312457790468, 0.8546565799816582, 0.8544786778328304, 0.8541996104322065, 1.993122635298203, 0.8541511785636301, 0.8541279185214848, 0.8540999321237438, 1.4230230383072224, 4.856872259241134, 1.4269680051811995, 0.8569168400587953, 0.8565470160097096, 0.8559813402815563, 0.8559408210757188, 0.855014561589195, 0.8538106685402618, 0.8535006939603489, 0.8534731324035604, 0.8534696274657029, 0.8531218420410243], "Total": [11.0, 3.0, 2.0, 2.0, 4.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 3.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.7793969700425123, 2.0664970241161895, 4.061485296588726, 1.3536083517820703, 1.353602499212231, 1.35358526576663, 1.3535751717534499, 1.3535748139638553, 1.3535694565062892, 1.3535663155209532, 1.3535613880008812, 1.3535566093364872, 1.353552295208587, 1.3535482326600439, 1.3535462296816112, 1.3535428220973587, 1.3535309951912224, 1.3535175236329091, 1.3535086252916326, 1.3535052592794994, 1.3534960527671873, 1.3534833729591829, 1.3534742766803292, 1.353470195089006, 1.3534697074865125, 1.3534618715176814, 1.3534590877852797, 1.3534536200942555, 1.353450143848664, 1.3534409443094713, 5.341362250257257, 3.3482370196368745, 3.347600135814385, 3.347589725583729, 3.347443771007393, 3.3473487158977906, 11.593798378478342, 4.48179448456443, 3.2014398752704825, 3.7672355516934717, 1.9210345467445162, 1.9209438564546941, 1.9209369715515288, 1.2080457708036487, 1.208046353888371, 1.2080542048767617, 1.2080561086180754, 1.2080602191760634, 1.2080620220711435, 1.2080652185757041, 1.2080661208278016, 1.208066290335374, 1.208068176911353, 1.2080817820374548, 1.2080927158103882, 2.4872547161853, 2.4873111074823777, 3.7672355516934717, 1.9203384168179691, 1.920357523429104, 1.9204271277320193, 1.9205621319067474, 1.9205765545307267, 1.9206094379213112, 1.92061960408239, 1.9206389998217803, 1.920684654211048, 1.920756565640211, 4.48179448456443, 1.9207691306548766, 1.9207751846488526, 1.9207822369138152, 3.2014398752704825, 11.593798378478342, 5.341362250257257, 3.3473487158977906, 3.347443771007393, 3.347589725583729, 3.347600135814385, 4.061485296588726, 1.92085688192016, 1.9209369715515288, 1.9209438564546941, 3.3482370196368745, 1.9210345467445162], "Category": ["Default", "Default", "Default", "Default", "Default", "Default", "Default", "Default", "Default", "Default", "Default", "Default", "Default", "Default", "Default", "Default", "Default", "Default", "Default", "Default", "Default", "Default", "Default", "Default", "Default", "Default", "Default", "Default", "Default", "Default", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic1", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2", "Topic2"], "logprob": [30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, -3.7519, -4.0879, -3.4981, -4.5977, -4.5977, -4.5978, -4.5978, -4.5978, -4.5978, -4.5979, -4.5979, -4.5979, -4.5979, -4.5979, -4.598, -4.598, -4.598, -4.5981, -4.5981, -4.5981, -4.5982, -4.5982, -4.5983, -4.5983, -4.5983, -4.5983, -4.5983, -4.5984, -4.5984, -4.5984, -3.2986, -3.749, -3.7503, -3.7503, -3.7506, -3.7508, -2.7556, -3.7515, -4.0875, -4.0919, -4.5975, -4.5979, -4.598, -4.2052, -4.2052, -4.2053, -4.2053, -4.2053, -4.2053, -4.2053, -4.2053, -4.2053, -4.2053, -4.2054, -4.2054, -3.6892, -3.6893, -3.3519, -4.1991, -4.1992, -4.1995, -4.2001, -4.2002, -4.2003, -4.2004, -4.2005, -4.2007, -4.201, -3.3537, -4.2011, -4.2011, -4.2011, -3.6906, -2.463, -3.6879, -4.1978, -4.1983, -4.1989, -4.199, -4.2001, -4.2015, -4.2018, -4.2019, -4.2019, -4.2023], "loglift": [30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.3196, 0.28, 0.1941, 0.1933, 0.1933, 0.1932, 0.1932, 0.1932, 0.1932, 0.1931, 0.1931, 0.1931, 0.1931, 0.1931, 0.1931, 0.1931, 0.193, 0.193, 0.1929, 0.1929, 0.1929, 0.1928, 0.1928, 0.1928, 0.1928, 0.1927, 0.1927, 0.1927, 0.1927, 0.1927, 0.1197, 0.1363, 0.1352, 0.1352, 0.135, 0.1348, -0.1124, -0.1578, -0.1574, -0.3245, -0.1566, -0.157, -0.157, 0.6995, 0.6995, 0.6995, 0.6995, 0.6995, 0.6994, 0.6994, 0.6994, 0.6994, 0.6994, 0.6993, 0.6993, 0.4934, 0.4932, 0.4155, 0.2421, 0.242, 0.2417, 0.241, 0.2409, 0.2408, 0.2407, 0.2406, 0.2404, 0.24, 0.24, 0.24, 0.2399, 0.2399, 0.2395, 0.1803, -0.2696, -0.3123, -0.3127, -0.3134, -0.3135, -0.5079, 0.2395, 0.2391, 0.2391, -0.3166, 0.2386]}, "token.table": {"Topic": [1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1], "Freq": [0.5974429199601676, 0.2987214599800838, 0.5974877939968621, 0.29874389699843107, 0.6037710654856785, 0.43126504677548466, 0.7488726307239969, 0.18721815768099923, 0.5206600512083697, 0.5206600512083697, 0.8277692609364554, 0.5205528457021511, 0.5205528457021511, 0.5206281826071427, 0.5206281826071427, 0.7388524834438343, 0.7388018935747208, 0.7387787273479444, 0.624718900844897, 0.3123594504224485, 0.7388415375738944, 0.5207363669523063, 0.5207363669523063, 0.7388393094937151, 0.5206247768356497, 0.5206247768356497, 0.5206212244063301, 0.5206212244063301, 0.5205792875090046, 0.5205792875090046, 0.5974447778696221, 0.29872238893481107, 0.7387842366409387, 0.8277585299841865, 0.8277678521063957, 0.8277761213789351, 0.8277720694220362, 0.8277828055035085, 0.7387844319233198, 0.7195805498663291, 0.5974708275377877, 0.29873541376889384, 0.7387967229192992, 0.8277774258498722, 0.5206808899263223, 0.5206808899263223, 0.7386460324058599, 0.24621534413528665, 0.5206009929278869, 0.5206009929278869, 0.7388343440183193, 0.7387693215563502, 0.5308932697614163, 0.5308932697614163, 0.7388223969904055, 0.8277698791618131, 0.738789070423288, 0.7388205596285253, 0.7388460813296994, 0.40204969498809473, 0.40204969498809473, 0.8277510384037042, 0.4020405798823398, 0.4020405798823398, 0.7388083490904641, 0.7388274224779053, 0.5206769798584466, 0.5206769798584466, 0.7387917599193137, 0.9678213792034714, 0.5207174932906604, 0.5207174932906604, 0.7388157024490896, 0.8277733047794859, 0.5206231359047965, 0.5206231359047965, 0.5206653091921176, 0.5206653091921176, 0.520668065175347, 0.520668065175347, 0.738798940348629, 0.7387943681869349, 0.7388575055339428, 0.4462498240131537, 0.4462498240131537, 0.5205774216876937, 0.5205774216876937, 0.7388418037497637, 0.7388000336236951, 0.8277691447895527, 0.59732927754825, 0.298664638774125, 0.7387661273539475, 0.5206476751962003, 0.5206476751962003, 0.7388476009543375, 0.5207415480741231, 0.5207415480741231, 0.8277832050475646, 0.7387873560482883, 0.738850585755838], "Term": ["(", "(", ")", ")", ",", ",", ".", ".", "account", "account", "accounting", "acute", "acute", "aggregate", "aggregate", "annual", "balance", "better", "care", "care", "chart", "chronic", "chronic", "clinical", "community", "community", "comparison", "comparison", "contain", "contain", "data", "data", "decision", "definition", "developed", "effective", "enabling", "facilitate", "federal", "financial", "health", "health", "hierarchical", "historical", "home", "home", "hospital", "hospital", "including", "including", "indicator", "individual", "information", "information", "input", "inter-regional", "jurisdiction", "lacking", "macro", "management", "management", "manitoba", "mi", "mi", "micro", "mis/ohrs", "money", "money", "national", "ontario", "personal", "personal", "portfolio", "practice", "provided", "provided", "range", "range", "rehab", "rehab", "reporting", "required", "serve", "service", "service", "spent", "spent", "stage", "standard", "standardized", "statistical", "statistical", "submission", "summarized", "summarized", "summary", "system", "system", "timely", "undergo", "within"]}, "R": 30, "lambda.step": 0.01, "plot.opts": {"xlab": "PC1", "ylab": "PC2"}, "topic.order": [1, 2]};
9
+
10
+ function LDAvis_load_lib(url, callback){
11
+ var s = document.createElement('script');
12
+ s.src = url;
13
+ s.async = true;
14
+ s.onreadystatechange = s.onload = callback;
15
+ s.onerror = function(){console.warn("failed to load library " + url);};
16
+ document.getElementsByTagName("head")[0].appendChild(s);
17
+ }
18
+
19
+ if(typeof(LDAvis) !== "undefined"){
20
+ // already loaded: just create the visualization
21
+ !function(LDAvis){
22
+ new LDAvis("#" + "ldavis_el573620783883092324287242648", ldavis_el573620783883092324287242648_data);
23
+ }(LDAvis);
24
+ }else if(typeof define === "function" && define.amd){
25
+ // require.js is available: use it to load d3/LDAvis
26
+ require.config({paths: {d3: "https://d3js.org/d3.v5"}});
27
+ require(["d3"], function(d3){
28
+ window.d3 = d3;
29
+ LDAvis_load_lib("https://cdn.jsdelivr.net/gh/bmabey/[email protected]/pyLDAvis/js/ldavis.v3.0.0.js", function(){
30
+ new LDAvis("#" + "ldavis_el573620783883092324287242648", ldavis_el573620783883092324287242648_data);
31
+ });
32
+ });
33
+ }else{
34
+ // require.js not available: dynamically load d3 & LDAvis
35
+ LDAvis_load_lib("https://d3js.org/d3.v5.js", function(){
36
+ LDAvis_load_lib("https://cdn.jsdelivr.net/gh/bmabey/[email protected]/pyLDAvis/js/ldavis.v3.0.0.js", function(){
37
+ new LDAvis("#" + "ldavis_el573620783883092324287242648", ldavis_el573620783883092324287242648_data);
38
+ })
39
+ });
40
+ }
41
+ </script>
scrape.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import necessary libraries
2
+ from selenium import webdriver
3
+ from selenium.webdriver.common.by import By
4
+ from selenium.webdriver.support.ui import WebDriverWait
5
+ import time
6
+
7
+
8
+ """
9
+ This code uses Selenium to scrape data from a webpage.
10
+ It initializes a Chrome webdriver and loads the webpage defined by the url variable.
11
+ It then clicks a modal pop-up that appears when the webpage is loaded.
12
+ The code then enters a loop to scrape data from each page of the webpage.
13
+ It locates the data tables and extracts the table rows.
14
+ It loops through each row of the table and extracts the name, region, and description from the row.
15
+ It appends these values to the dai_values list.
16
+ The code then finds the 'Next' button and checks if it is disabled.
17
+ If the button is disabled, the loop is broken.
18
+ If the button is not disabled, the code clicks the button, scrolls to it, and waits for 2 seconds before moving on to the next page.
19
+
20
+ Finally, the code quits the webdriver.
21
+ """
22
+
23
+ # Define the URL of the webpage to be scraped
24
+ url = 'https://www.hdrn.ca/en/inventory/'
25
+
26
+ # Initialize a Chrome webdriver
27
+ driver = webdriver.Chrome()
28
+ driver.get(url)
29
+
30
+ # Define a wait time for the driver to locate web elements
31
+ wait = WebDriverWait(driver, 2)
32
+
33
+ # Create an empty list to store the scraped data
34
+ dai_values = []
35
+
36
+ # Click the modal pop-up that appears when the webpage is loaded
37
+ driver.find_element(By.ID, 'myModal').click()
38
+
39
+ # Loop through the webpage to scrape data from each page
40
+ while True:
41
+ # Locate the data tables and extract the table rows
42
+ data_tables_scroll = driver.find_elements(By.CLASS_NAME, 'dataTables_scrollBody')[-1]
43
+ table = data_tables_scroll.find_elements(By.TAG_NAME, 'tr')
44
+
45
+ # Loop through each row of the table
46
+ for row in table:
47
+ # Extract the values from each cell of the row
48
+ row_values = row.find_elements(By.TAG_NAME, 'td')
49
+ # If the row has less than 2 cells, skip to the next row
50
+ if len(row_values) < 2:
51
+ continue
52
+ # Extract the name, region, and description from the row and append to the dai_values list
53
+ name, region, description = row_values
54
+ dai_values.append({
55
+ 'name': name.text,
56
+ 'region': region.text,
57
+ 'description': description.text
58
+ })
59
+
60
+ # Find the 'Next' button and check if it is disabled
61
+ next_button = driver.find_elements(By.ID, 'thelist_next')
62
+ if 'disabled' in next_button[0].get_attribute('class'):
63
+ # If the button is disabled, break out of the loop
64
+ break
65
+ else:
66
+ # If the button is not disabled, click it, scroll to it, and wait for 2 seconds before moving on to the next page
67
+ driver.click()
68
+ driver.execute_script("arguments[0].scrollIntoView();", next_button[0])
69
+ time.sleep(2)
70
+ next_button[0].click()
71
+
72
+ # Quit the webdriver
73
+ driver.quit()
similarity_dict (based on description).csv ADDED
The diff for this file is too large to render. See raw diff
 
similarity_dict (based on name).csv ADDED
The diff for this file is too large to render. See raw diff
 
word.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from wordcloud import WordCloud
2
+ import nltk
3
+ from nltk import ngrams
4
+ import matplotlib.pyplot as plt
5
+ import pandas as pd
6
+ from collections import Counter
7
+ import seaborn as sns
8
+
9
+ from lda import preprocess_text
10
+
11
+ doc = """
12
+ Database that collects, administrative, clinical and demographic information on hospital discharges (including deaths, sign-outs and transfers). Some provinces and territories also use the DAD to capture day surgery.
13
+ The discharge abstract database is a database for information on all AHS separations for acute care institutions, including discharges, deaths, sign-outs and transfers.
14
+ Data on discharges, transfers and deaths of in-patients and day surgery patients from acute care hospitals in BC. All Canadian hospitals (except those in Quebec) submit their separations records directly to the Canadian Institute of Health information (CIHI) for inclusion in the Discharge Abstract Database (DAD). The database contains demographic, administrative and clinical data for hospital discharges (inpatient acute, chronic, rehabilitation) and day surgeries. A provincial data set, including various CIHI value-added elements (such as case mix groups, and resource intensity weights) is released on a monthly basis to the respective Ministries of Health. The DAD data files which Population Data BC receives include the CIHI variables. Population Data BC receives these data once per year.
15
+ Health data maintained by Manitoba Health consisting of hospital forms/computerized records containing summaries of demographic and clinical information (e.g., gender, postal code, diagnoses and procedure codes) completed at the point of discharge from the hospital. Several hundred thousand abstracts per year are submitted for all separations from acute and chronic care facilities in Manitoba and for all Manitobans admitted to out-of-province facilities. The Hospital Abstracts Data includes records of both Manitoba residents and non-Manitoba residents hospitalized in Manitoba facilities and information about inpatient and day surgery services.
16
+ Patient discharge information from New Brunswick hospitals. Captures administrative, clinical and demographic information including discharges, deaths, sign-outs, and transfers.
17
+ The Provincial Discharge Abstract Database (PDAD) is the NLCHI dataset that contains demographic, clinical and administrative data collected at hospitals when patients are discharged from inpatient and surgical day care services and submitted to the CIHI Discharge Abstract Database. The PDAD captures information regarding hospitalizations of both residents of NL and non-residents receiving care in NL.
18
+ Contains information on each hospital admission recorded in a Nova Scotia hospital
19
+ The Discharge Abstract Database is a database for information on all separation from acute care institutions within a fiscal year (April 1st to March 31st). Data is received directly from acute care facilities or from their respective health/regional authority or ministry/department of health.
20
+ Captures administrative, clinical and demographic information on discharges for acute care facilities (including deaths, sign-outs and transfers).
21
+
22
+ """
23
+
24
+ def show_gram_plot(doc, n_grams, top_words=10, save_output='results/'):
25
+ lemmatized_docs = preprocess_text([doc])
26
+ tokens = ngrams(lemmatized_docs[0], n_grams)
27
+ tokens = [' '.join(item) for item in list(tokens)]
28
+ count_tokens = Counter(tokens).most_common(top_words)
29
+ words, count = zip(*count_tokens)
30
+ tokens_df = pd.DataFrame({'word': words, 'count': count})
31
+ plt.figure(figsize=(8, 24))
32
+ sns.catplot(data=tokens_df, x='word', y='count', kind='bar', palette='blend:#7AB,#EDA')
33
+ plt.xticks(rotation=-10, fontsize=6)
34
+ plt.savefig(save_output, dpi=300)
35
+
36
+ if __name__ == '__main__':
37
+ lemmatized_docs = preprocess_text([doc])
38
+ # Create a word cloud object
39
+ wordcloud = WordCloud(width=800, height=800, background_color='white', min_font_size=10).generate(
40
+ ' '.join([' '.join(doc) for doc in lemmatized_docs]))
41
+
42
+ # Display the generated image:
43
+ plt.figure(figsize=(8, 8), facecolor=None)
44
+ plt.imshow(wordcloud)
45
+ plt.axis("off")
46
+ plt.tight_layout(pad=0)
47
+ plt.show()
48
+
49
+ show_gram_plot(1)
50
+ show_gram_plot(2)
51
+ show_gram_plot(3)