Spaces:
Running
Running
updated app
Browse files
app.py
CHANGED
@@ -1,9 +1,44 @@
|
|
1 |
|
2 |
-
from
|
|
|
|
|
|
|
|
|
|
|
3 |
model = SentenceTransformer('clip-ViT-L-14')
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
def predict(im1, im2,inp_sim):
|
6 |
-
|
|
|
|
|
|
|
7 |
sim = util.cos_sim(img_emb[0], img_emb[1])
|
8 |
if sim > inp_sim:
|
9 |
return sim, "SAME PERSON, UNLOCK PHONE"
|
|
|
1 |
|
2 |
+
from transformers import pipeline
|
3 |
+
from PIL import Image, ImageDraw
|
4 |
+
from sentence_transformers import util, SentenceTransformer
|
5 |
+
|
6 |
+
checkpoint = "google/owlvit-base-patch32"
|
7 |
+
detector = pipeline(model=checkpoint, task="zero-shot-object-detection")
|
8 |
model = SentenceTransformer('clip-ViT-L-14')
|
9 |
|
10 |
+
def get_face_image(im1):
|
11 |
+
predictions = detector(
|
12 |
+
im1,
|
13 |
+
candidate_labels=["human face"],
|
14 |
+
)
|
15 |
+
max_score = 0
|
16 |
+
box_area = None
|
17 |
+
for prediction in predictions:
|
18 |
+
box = prediction["box"]
|
19 |
+
label = prediction["label"]
|
20 |
+
score = prediction["score"]
|
21 |
+
if score > max_score :
|
22 |
+
xmin, ymin, xmax, ymax = box.values()
|
23 |
+
box_area = (xmin, ymin, xmax, ymax)
|
24 |
+
max_score = score
|
25 |
+
else:
|
26 |
+
continue
|
27 |
+
draw = ImageDraw.Draw(im1)
|
28 |
+
draw.rectangle(box_area, outline="red", width=1)
|
29 |
+
draw.text((xmin, ymin), f"{label}: {round(score,2)}", fill="blue")
|
30 |
+
crop_img1 = im1.crop(box_area)
|
31 |
+
#display(crop_img1)
|
32 |
+
newsize = (200, 200)
|
33 |
+
face_img1 = crop_img1.resize(newsize)
|
34 |
+
#display(face_img1)
|
35 |
+
return face_img1
|
36 |
+
|
37 |
def predict(im1, im2,inp_sim):
|
38 |
+
face_image1 = get_face_image(im1)
|
39 |
+
face_image2 = get_face_image(im2)
|
40 |
+
|
41 |
+
img_emb = model.encode([face_image1, face_image2])
|
42 |
sim = util.cos_sim(img_emb[0], img_emb[1])
|
43 |
if sim > inp_sim:
|
44 |
return sim, "SAME PERSON, UNLOCK PHONE"
|