watermark_maker / app.py
daswer123's picture
Upload 3 files
b7ff52b verified
raw
history blame
2.44 kB
import gradio as gr
from funcs import process_image
def process_image_gradio(image_path, watermark_text, font_path, font_size, opacity, color, right_margin, bottom_margin):
# Вызываем функцию process_image из funcs.py
output_paths = process_image(image_path, "output", watermark_text, font_path.name, font_size, opacity, color, right_margin, bottom_margin)
# Cover obj to json str
generation_params_str = f"Watermark Text: {watermark_text}\nFont Size: {font_size}\nOpacity: {opacity}\nColor: {color}\nRight Margin: {right_margin}\nBottom Margin: {bottom_margin}"
# Возвращаем путь к изображению с водяным знаком
return output_paths[0], output_paths[1], generation_params_str
# Определяем интерфейс с использованием Gradio
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
# Компоненты для настроек
image = gr.Image(label="Upload Image", type="filepath")
font_path = gr.File(label="Font Path", file_types=[".ttf"])
watermark_text = gr.Textbox(label="Watermark Text")
font_size = gr.Slider(minimum=6, maximum=100, step=1, label="Font Size", value=30)
opacity = gr.Slider(minimum=0, maximum=1, step=0.01, label="Opacity", value=0.5)
color = gr.ColorPicker(label="Color",value="#000000")
right_margin = gr.Slider(minimum=0, maximum=1, step=0.01, label="Right Margin", value=0.05)
bottom_margin = gr.Slider(minimum=0, maximum=1, step=0.01, label="Bottom Margin", value=0.02)
with gr.Column():
# Компонент для отображения результата
process_button = gr.Button("Process Image")
generation_params = gr.Textbox(label="Generation Parameters",interactive=False,show_copy_button=True)
output_image = gr.Image(label="Output Image",interactive=False)
output_mini = gr.Image(label="Output Image (Mini)",interactive=False)
# Обработчик нажатия кнопки "Process Image"
process_button.click(process_image_gradio, inputs=[image, watermark_text, font_path, font_size, opacity, color, right_margin, bottom_margin], outputs=[output_image,output_mini,generation_params])
# Запускаем интерфейс
demo.queue()
demo.launch()