Spaces:
Sleeping
Sleeping
data-silence
commited on
Upload 2 files
Browse files- inference.py +63 -0
- requirements.txt +4 -0
inference.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from transformers import BertModel
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
|
8 |
+
class BiLSTMClassifier(nn.Module):
|
9 |
+
def __init__(self, hidden_dim, output_dim, n_layers, dropout):
|
10 |
+
super(BiLSTMClassifier, self).__init__()
|
11 |
+
self.bert = BertModel.from_pretrained("bert-base-multilingual-cased")
|
12 |
+
self.lstm = nn.LSTM(self.bert.config.hidden_size, hidden_dim, num_layers=n_layers,
|
13 |
+
bidirectional=True, dropout=dropout, batch_first=True)
|
14 |
+
self.fc = nn.Linear(hidden_dim * 2, output_dim)
|
15 |
+
self.dropout = nn.Dropout(dropout)
|
16 |
+
|
17 |
+
def forward(self, input_ids, attention_mask, labels=None):
|
18 |
+
with torch.no_grad():
|
19 |
+
embedded = self.bert(input_ids=input_ids, attention_mask=attention_mask)[0]
|
20 |
+
lstm_out, _ = self.lstm(embedded)
|
21 |
+
pooled = torch.mean(lstm_out, dim=1)
|
22 |
+
logits = self.fc(self.dropout(pooled))
|
23 |
+
|
24 |
+
if labels is not None:
|
25 |
+
loss_fn = nn.CrossEntropyLoss()
|
26 |
+
loss = loss_fn(logits, labels)
|
27 |
+
return {"loss": loss, "logits": logits} # Возвращаем словарь
|
28 |
+
return logits # Возвращаем логиты, если метки не переданы
|
29 |
+
|
30 |
+
|
31 |
+
categories = ['climate', 'conflicts', 'culture', 'economy', 'gloss', 'health',
|
32 |
+
'politics', 'science', 'society', 'sports', 'travel']
|
33 |
+
|
34 |
+
repo_id = "data-silence/lstm-news-classifier"
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
36 |
+
model_path = hf_hub_download(repo_id=repo_id, filename="model.pth")
|
37 |
+
|
38 |
+
model = torch.load(model_path)
|
39 |
+
|
40 |
+
|
41 |
+
def predict(news: str) -> str:
|
42 |
+
with torch.no_grad():
|
43 |
+
inputs = tokenizer(news, return_tensors="pt")
|
44 |
+
del inputs['token_type_ids']
|
45 |
+
output = model.forward(**inputs)
|
46 |
+
id_best_label = torch.argmax(output[0, :], dim=-1).detach().cpu().numpy()
|
47 |
+
prediction = categories[id_best_label]
|
48 |
+
return prediction
|
49 |
+
|
50 |
+
|
51 |
+
# Создание интерфейса Gradio
|
52 |
+
iface = gr.Interface(
|
53 |
+
fn=predict,
|
54 |
+
inputs=gr.Textbox(lines=5, label="Enter news text | Введите текст новости"),
|
55 |
+
outputs=[
|
56 |
+
gr.Label(label="Predicted category | Предсказанная категория"),
|
57 |
+
gr.Label(label="Category probabilities | Вероятности категорий")
|
58 |
+
],
|
59 |
+
title="News Classifier | Классификатор новостей",
|
60 |
+
description="Enter the news text in any language and the model will predict its category. | Введите текст новости на любом языке, и модель предскажет её категорию"
|
61 |
+
)
|
62 |
+
|
63 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
huggingface_hub
|