youl commited on
Commit
a177517
·
1 Parent(s): 7f7d638

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -8
app.py CHANGED
@@ -14,14 +14,14 @@ from glob import glob
14
  import wget
15
 
16
  ##
17
- def timer(start_time=None):
18
  if not start_time:
19
  start_time = datetime.now()
20
  return start_time
21
  elif start_time:
22
  thour, temp_sec = divmod((datetime.now() - start_time).total_seconds(), 3600)
23
  tmin, tsec = divmod(temp_sec, 60)
24
- print('\n Time taken: %i hours %i minutes and %s seconds.' % (thour, tmin, round(tsec, 2)))
25
 
26
  ##
27
  def predict(lat, lon):
@@ -45,24 +45,25 @@ def predict(lat, lon):
45
  return "Choose an area of ivory coast","","","",""
46
 
47
  else:
48
- start_time = timer(None)
49
  df = pd.read_csv("data/frame.csv")
50
  name = find_good_tile(df,point2)
51
- timer(start_time)
52
  if name ==404:
53
  reponse = "Sentinel-2 does not have data on this location to date"
54
  return reponse,"","","",""
55
  else:
56
- start_time = timer(None)
57
  path = "https://data354-public-assets.s3.eu-west-3.amazonaws.com/cisentineldata/"
58
  url = path+name
59
  wget.download(url)
60
- timer(start_time)
61
 
62
- start_time = timer(None)
63
  unzip()
64
- timer(start_time)
65
 
 
66
  name,cld_prob,days_ago = select_best_cloud_coverage_tile()
67
  bandes_path_10,bandes_path_20,bandes_path_60,tile_path,path_cld_20,path_cld_60 =paths(name)
68
  # create image dataset
@@ -90,6 +91,7 @@ def predict(lat, lon):
90
 
91
  # NDVI
92
  ndvi_index = ndvi(cord,name)
 
93
 
94
  # deleted download files
95
  delete_tiles()
 
14
  import wget
15
 
16
  ##
17
+ def timer(start_time=None, message):
18
  if not start_time:
19
  start_time = datetime.now()
20
  return start_time
21
  elif start_time:
22
  thour, temp_sec = divmod((datetime.now() - start_time).total_seconds(), 3600)
23
  tmin, tsec = divmod(temp_sec, 60)
24
+ print('\n'+message+' Time taken: %i hours %i minutes and %s seconds.' % (thour, tmin, round(tsec, 2)))
25
 
26
  ##
27
  def predict(lat, lon):
 
45
  return "Choose an area of ivory coast","","","",""
46
 
47
  else:
48
+ start_time_research = timer(None,'research tile')
49
  df = pd.read_csv("data/frame.csv")
50
  name = find_good_tile(df,point2)
51
+ timer(start_time_research,'research tile')
52
  if name ==404:
53
  reponse = "Sentinel-2 does not have data on this location to date"
54
  return reponse,"","","",""
55
  else:
56
+ start_time_download = timer(None,'download tile')
57
  path = "https://data354-public-assets.s3.eu-west-3.amazonaws.com/cisentineldata/"
58
  url = path+name
59
  wget.download(url)
60
+ timer(start_time_download,'download tile')
61
 
62
+ start_time_unzip = timer(None,'unzip data')
63
  unzip()
64
+ timer(start_time_unzip,'unzip data')
65
 
66
+ start_time_processing = timer(None,'processing data')
67
  name,cld_prob,days_ago = select_best_cloud_coverage_tile()
68
  bandes_path_10,bandes_path_20,bandes_path_60,tile_path,path_cld_20,path_cld_60 =paths(name)
69
  # create image dataset
 
91
 
92
  # NDVI
93
  ndvi_index = ndvi(cord,name)
94
+ timer(start_time_processing,'processing data')
95
 
96
  # deleted download files
97
  delete_tiles()