Spaces:
Runtime error
Runtime error
File size: 2,334 Bytes
e2123b4 e3519cb 1a52c2c e3519cb e2123b4 e3519cb 1a52c2c e2123b4 1a52c2c e3519cb e2123b4 fbe400f e3519cb 1a52c2c fbe400f 1a52c2c e3519cb 1a52c2c e2123b4 e3519cb 1a52c2c e3519cb 1a52c2c e3519cb d328cf9 1a52c2c e3519cb 1a52c2c e3519cb 1a52c2c e3519cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
import itertools
import gradio as gr
import requests
import os
from gradio.themes.utils import sizes
def respond(message, history):
if len(message.strip()) == 0:
return "ERROR the question should not be empty"
local_token = os.getenv('API_TOKEN')
local_endpoint = os.getenv('API_ENDPOINT')
if local_token is None or local_endpoint is None:
return "ERROR missing env variables"
# Add your API token to the headers
headers = {
'Content-Type': 'application/json',
'Authorization': f'Bearer {local_token}'
}
#prompt = list(itertools.chain.from_iterable(history))
#prompt.append(message)
#q = {"inputs": [prompt]}
q = {"inputs": [message]}
try:
response = requests.post(
local_endpoint, json=q, headers=headers, timeout=100)
response_data = response.json()
#print(response_data)
response_data=response_data["predictions"][0]
#print(response_data)
except Exception as error:
response_data = f"ERROR status_code: {type(error).__name__}"
# + str(response.status_code) + " response:" + response.text
# print(response.json())
return response_data
theme = gr.themes.Soft(
text_size=sizes.text_sm,radius_size=sizes.radius_sm, spacing_size=sizes.spacing_sm,
)
demo = gr.ChatInterface(
respond,
chatbot=gr.Chatbot(show_label=False, container=False, show_copy_button=True, bubble_full_width=True),
textbox=gr.Textbox(placeholder="Ask me a question",
container=False, scale=7),
title="Databricks LLM RAG demo - Chat with DBRX Databricks model serving endpoint",
description="This chatbot is a demo example for the dbdemos llm chatbot. <br>This content is provided as a LLM RAG educational example, without support. It is using DBRX, can hallucinate and should not be used as production content.<br>Please review our dbdemos license and terms for more details.",
examples=[["What is DBRX?"],
["How can I start a Databricks cluster?"],
["What is a Databricks Cluster Policy?"],
["How can I track billing usage on my workspaces?"],],
cache_examples=False,
theme=theme,
retry_btn=None,
undo_btn=None,
clear_btn="Clear",
)
if __name__ == "__main__":
demo.launch()
|