import itertools
import gradio as gr
import requests
import os
def respond(message, history):
if len(message.strip()) == 0:
return "ERROR the question should not be empty"
local_token = os.environ['API_TOKEN']
local_endpoint = os.environ['API_ENDPOINT']
# Add your API token to the headers
headers = {
'Content-Type': 'application/json',
'Authorization': f'Bearer {local_token}'
}
prompt = list(itertools.chain.from_iterable(history))
prompt.append(message)
q = {"inputs": [prompt]}
try:
response = requests.post(local_endpoint, json=q, headers=headers, timeout=100)
response_data = response.json(
)["predictions"]
except:
response_data = "ERROR status_code:" + \
str(response.status_code) + " response:" + response.text
#print(response.json())
return response_data
demo = gr.ChatInterface(
respond,
chatbot=gr.Chatbot(height=400),
textbox=gr.Textbox(placeholder="Ask me a question",
container=False, scale=7),
title="Databricks LLM RAG demo - Chat with llama2 Databricks model serving endpoint",
description="This chatbot is a demo example for the dbdemos llm chatbot.
This content is provided as a LLM RAG educational example, without support. It is using llama2, can hallucinate and should not be used as production content.
Please review our dbdemos license and terms for more details.",
examples=[["How can I start a Databricks cluster?"], ["What is a Databricks Cluster Policy?"]],
cache_examples=False,
theme="soft",
retry_btn=None,
undo_btn=None,
clear_btn="Clear"
)
if __name__ == "__main__":
demo.launch()