datacipen commited on
Commit
81232c3
·
verified ·
1 Parent(s): f3612d4

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +520 -0
  2. requirements.txt +7 -0
app.py ADDED
@@ -0,0 +1,520 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import datetime
3
+ import requests
4
+ from offres_emploi import Api
5
+ from offres_emploi.utils import dt_to_str_iso
6
+ from dash import Dash, html, dcc, callback, Output, Input, dash_table, State, _dash_renderer
7
+ import plotly.express as px
8
+ import dash_mantine_components as dmc
9
+ from dash_iconify import DashIconify
10
+ import pandas as pd
11
+ from dotenv import load_dotenv
12
+ _dash_renderer._set_react_version("18.2.0")
13
+ import plotly.io as pio
14
+
15
+ # Create a customized version of the plotly_dark theme with a modified background color
16
+ custom_plotly_dark_theme = {
17
+ "layout": {
18
+ "paper_bgcolor": "#1E1E1E", # Update the paper background color
19
+ "plot_bgcolor": "#1E1E1E", # Update the plot background color
20
+ "font": {
21
+ "color": "#FFFFFF" # Update the font color
22
+ },
23
+ "xaxis": {
24
+ "gridcolor": "#333333", # Update the x-axis grid color
25
+ "zerolinecolor": "#666666" # Update the x-axis zero line color
26
+ },
27
+ "yaxis": {
28
+ "gridcolor": "#333333", # Update the y-axis grid color
29
+ "zerolinecolor": "#666666" # Update the y-axis zero line color
30
+ }
31
+ }
32
+ }
33
+
34
+ # Apply the customized theme to your Plotly figures
35
+ pio.templates["custom_plotly_dark"] = custom_plotly_dark_theme
36
+ pio.templates.default = "custom_plotly_dark"
37
+
38
+ load_dotenv()
39
+
40
+ def localisation():
41
+ ListCentroids = [
42
+ { "ID": "01", "Longitude": 5.3245259, "Latitude":46.0666003 },
43
+ { "ID": "02", "Longitude": 3.5960246, "Latitude": 49.5519632 },
44
+ { "ID": "03", "Longitude": 3.065278, "Latitude": 46.4002783 },
45
+ { "ID": "04", "Longitude": 6.2237688, "Latitude": 44.1105837 },
46
+ { "ID": "05", "Longitude": 6.2018836, "Latitude": 44.6630487 },
47
+ { "ID": "06", "Longitude": 7.0755745, "Latitude":43.9463082 },
48
+ { "ID": "07", "Longitude": 4.3497308, "Latitude": 44.7626044 },
49
+ { "ID": "08", "Longitude": 4.6234893, "Latitude": 49.6473884 },
50
+ { "ID": "09", "Longitude": 1.6037147, "Latitude": 42.9696091 },
51
+ { "ID": "10", "Longitude": 4.1394954, "Latitude": 48.2963286 },
52
+ { "ID": "11", "Longitude": 2.3140163, "Latitude": 43.1111427 },
53
+ { "ID": "12", "Longitude": 2.7365234, "Latitude": 44.2786323 },
54
+ { "ID": "13", "Longitude": 5.0515492, "Latitude": 43.5539098 },
55
+ { "ID": "14", "Longitude": -0.3930779, "Latitude": 49.1024215 },
56
+ { "ID": "15", "Longitude": 2.6367657, "Latitude": 44.9643217 },
57
+ { "ID": "16", "Longitude": 0.180475, "Latitude": 45.706264 },
58
+ { "ID": "17", "Longitude": -0.7082589, "Latitude": 45.7629699 },
59
+ { "ID": "18", "Longitude": 2.5292424, "Latitude": 47.0926687 },
60
+ { "ID": "19", "Longitude": 1.8841811, "Latitude": 45.3622055 },
61
+ { "ID": "2A", "Longitude": 8.9906834, "Latitude": 41.8619761 },
62
+ { "ID": "2B", "Longitude": 9.275489, "Latitude": 42.372014 },
63
+ { "ID": "21", "Longitude": 4.7870471, "Latitude": 47.4736746 },
64
+ { "ID": "22", "Longitude": -2.9227591, "Latitude": 48.408402 },
65
+ { "ID": "23", "Longitude": 2.0265508, "Latitude": 46.0837382 },
66
+ { "ID": "24", "Longitude": 0.7140145, "Latitude": 45.1489678 },
67
+ { "ID": "25", "Longitude": 6.3991355, "Latitude": 47.1879451 },
68
+ { "ID": "26", "Longitude": 5.1717552, "Latitude": 44.8055408 },
69
+ { "ID": "27", "Longitude": 0.9488116, "Latitude": 49.1460288 },
70
+ { "ID": "28", "Longitude": 1.2793491, "Latitude": 48.3330017 },
71
+ { "ID": "29", "Longitude": -4.1577074, "Latitude": 48.2869945 },
72
+ { "ID": "30", "Longitude": 4.2650329, "Latitude": 43.9636468 },
73
+ { "ID": "31", "Longitude": 1.2728958, "Latitude": 43.3671081 },
74
+ { "ID": "32", "Longitude": 0.4220039, "Latitude": 43.657141 },
75
+ { "ID": "33", "Longitude": -0.5760716, "Latitude": 44.8406068 },
76
+ { "ID": "34", "Longitude": 3.4197556, "Latitude": 43.62585 },
77
+ { "ID": "35", "Longitude": -1.6443812, "Latitude": 48.1801254 },
78
+ { "ID": "36", "Longitude": 1.6509938, "Latitude": 46.7964222 },
79
+ { "ID": "37", "Longitude": 0.7085619, "Latitude": 47.2802601 },
80
+ { "ID": "38", "Longitude": 5.6230772, "Latitude": 45.259805 },
81
+ { "ID": "39", "Longitude": 5.612871, "Latitude": 46.7398138 },
82
+ { "ID": "40", "Longitude": -0.8771738, "Latitude": 44.0161251 },
83
+ { "ID": "41", "Longitude": 1.3989178, "Latitude": 47.5866519 },
84
+ { "ID": "42", "Longitude": 4.2262355, "Latitude": 45.7451186 },
85
+ { "ID": "43", "Longitude": 3.8118151, "Latitude": 45.1473029 },
86
+ { "ID": "44", "Longitude": -1.7642949, "Latitude": 47.4616509 },
87
+ { "ID": "45", "Longitude": 2.2372695, "Latitude": 47.8631395 },
88
+ { "ID": "46", "Longitude": 1.5732157, "Latitude": 44.6529284 },
89
+ { "ID": "47", "Longitude": 0.4788052, "Latitude": 44.4027215 },
90
+ { "ID": "48", "Longitude": 3.4991239, "Latitude": 44.5191573 },
91
+ { "ID": "49", "Longitude": -0.5136056, "Latitude": 47.3945201 },
92
+ { "ID": "50", "Longitude": -1.3203134, "Latitude": 49.0162072 },
93
+ { "ID": "51", "Longitude": 4.2966555, "Latitude": 48.9479636 },
94
+ { "ID": "52", "Longitude": 5.1325796, "Latitude": 48.1077196 },
95
+ { "ID": "53", "Longitude": -0.7073921, "Latitude": 48.1225795 },
96
+ { "ID": "54", "Longitude": 6.144792, "Latitude": 48.7995163 },
97
+ { "ID": "55", "Longitude": 5.2888292, "Latitude": 49.0074545 },
98
+ { "ID": "56", "Longitude": -2.8746938, "Latitude": 47.9239486 },
99
+ { "ID": "57", "Longitude": 6.5610683, "Latitude": 49.0399233 },
100
+ { "ID": "58", "Longitude": 3.5544332, "Latitude": 47.1122301 },
101
+ { "ID": "59", "Longitude": 3.2466616, "Latitude": 50.4765414 },
102
+ { "ID": "60", "Longitude": 2.4161734, "Latitude": 49.3852913 },
103
+ { "ID": "61", "Longitude": 0.2248368, "Latitude": 48.5558919 },
104
+ { "ID": "62", "Longitude": 2.2555152, "Latitude": 50.4646795 },
105
+ { "ID": "63", "Longitude": 3.1322144, "Latitude": 45.7471805 },
106
+ { "ID": "64", "Longitude": -0.793633, "Latitude": 43.3390984 },
107
+ { "ID": "65", "Longitude": 0.1478724, "Latitude": 43.0526238 },
108
+ { "ID": "66", "Longitude": 2.5239855, "Latitude": 42.5825094 },
109
+ { "ID": "67", "Longitude": 7.5962225, "Latitude": 48.662515 },
110
+ { "ID": "68", "Longitude": 7.2656284, "Latitude": 47.8586205 },
111
+ { "ID": "69", "Longitude": 4.6859896, "Latitude": 45.8714754 },
112
+ { "ID": "70", "Longitude": 6.1388571, "Latitude": 47.5904191 },
113
+ { "ID": "71", "Longitude": 4.6394021, "Latitude": 46.5951234 },
114
+ { "ID": "72", "Longitude": 0.1947322, "Latitude": 48.0041421 },
115
+ { "ID": "73", "Longitude": 6.4662232, "Latitude": 45.4956055 },
116
+ { "ID": "74", "Longitude": 6.3609606, "Latitude": 46.1045902 },
117
+ { "ID": "75", "Longitude": 2.3416082, "Latitude": 48.8626759 },
118
+ { "ID": "76", "Longitude": 1.025579, "Latitude": 49.6862911 },
119
+ { "ID": "77", "Longitude": 2.8977309, "Latitude": 48.5957831 },
120
+ { "ID": "78", "Longitude": 1.8080138, "Latitude": 48.7831982 },
121
+ { "ID": "79", "Longitude": -0.3159014, "Latitude": 46.5490257 },
122
+ { "ID": "80", "Longitude": 2.3380595, "Latitude": 49.9783317 },
123
+ { "ID": "81", "Longitude": 2.2072751, "Latitude": 43.8524305 },
124
+ { "ID": "82", "Longitude": 1.2649374, "Latitude": 44.1254902 },
125
+ { "ID": "83", "Longitude": 6.1486127, "Latitude": 43.5007903 },
126
+ { "ID": "84", "Longitude": 5.065418, "Latitude": 44.0001599 },
127
+ { "ID": "85", "Longitude": -1.3956692, "Latitude": 46.5929102 },
128
+ { "ID": "86", "Longitude": 0.4953679, "Latitude": 46.5719095 },
129
+ { "ID": "87", "Longitude": 1.2500647, "Latitude": 45.9018644 },
130
+ { "ID": "88", "Longitude": 6.349702, "Latitude": 48.1770451 },
131
+ { "ID": "89", "Longitude": 3.5634078, "Latitude": 47.8474664 },
132
+ { "ID": "90", "Longitude": 6.9498114, "Latitude": 47.6184394 },
133
+ { "ID": "91", "Longitude": 2.2714555, "Latitude": 48.5203114 },
134
+ { "ID": "92", "Longitude": 2.2407148, "Latitude": 48.835321 },
135
+ { "ID": "93", "Longitude": 2.4811577, "Latitude": 48.9008719 },
136
+ { "ID": "94", "Longitude": 2.4549766, "Latitude": 48.7832368 },
137
+ { "ID": "95", "Longitude": 2.1802056, "Latitude": 49.076488 },
138
+ { "ID": "974", "Longitude": 55.536384, "Latitude": -21.115141 },
139
+ { "ID": "973", "Longitude": -53.125782, "Latitude": 3.933889 },
140
+ { "ID": "972", "Longitude": -61.024174, "Latitude": 14.641528 },
141
+ { "ID": "971", "Longitude": -61.551, "Latitude": 16.265 }
142
+ ]
143
+
144
+ return ListCentroids
145
+
146
+ def connexion_France_Travail():
147
+ client = Api(client_id=os.getenv('POLE_EMPLOI_CLIENT_ID'),
148
+ client_secret=os.getenv('POLE_EMPLOI_CLIENT_SECRET'))
149
+ return client
150
+
151
+ def API_France_Travail(romeListArray):
152
+ client = connexion_France_Travail()
153
+ todayDate = datetime.datetime.today()
154
+ month, year = (todayDate.month-1, todayDate.year) if todayDate.month != 1 else (12, todayDate.year-1)
155
+ start_dt = todayDate.replace(day=1, month=month, year=year)
156
+ end_dt = datetime.datetime.today()
157
+ results = []
158
+ for k in romeListArray:
159
+ if k[0:1] == ' ':
160
+ k = k[1:]
161
+ params = {"motsCles": k.replace('/', '').replace('-', '').replace(',', '').replace(' ', ','),'minCreationDate': dt_to_str_iso(start_dt),'maxCreationDate': dt_to_str_iso(end_dt),'range':'0-149'}
162
+ try:
163
+ search_on_big_data = client.search(params=params)
164
+ results += search_on_big_data["resultats"]
165
+ except:
166
+ print("Il n'y a pas d'offres d'emploi.")
167
+
168
+ results_df = pd.DataFrame(results)
169
+ return results_df
170
+
171
+ theme_toggle = dmc.Tooltip(
172
+ dmc.ActionIcon(
173
+ [
174
+ dmc.Paper(DashIconify(icon="radix-icons:sun", width=25), darkHidden=True),
175
+ dmc.Paper(DashIconify(icon="radix-icons:moon", width=25), lightHidden=True),
176
+ ],
177
+ variant="transparent",
178
+ color="yellow",
179
+ id="color-scheme-toggle",
180
+ size="lg",
181
+ ms="auto",
182
+ ),
183
+ label="Changez de thème",
184
+ position="left",
185
+ withArrow=True,
186
+ arrowSize=6,
187
+ )
188
+
189
+ styleTitle = {
190
+ "textAlign": "center",
191
+ "color": dmc.DEFAULT_THEME["colors"]["orange"][4]
192
+ }
193
+
194
+ styleToggle = {
195
+ "marginTop":"25px",
196
+ "textAlign": "right",
197
+ }
198
+ app = Dash(external_stylesheets=dmc.styles.ALL)
199
+
200
+ app.layout = dmc.MantineProvider(
201
+ [
202
+ html.Div(
203
+ children=[
204
+ dmc.Container(
205
+ children=[
206
+ dmc.Grid(
207
+ children=[
208
+ dmc.GridCol(html.Div(
209
+ dmc.MultiSelect(
210
+ label="Selectionnez vos Codes ROME",
211
+ placeholder="Select vos Codes ROME parmi la liste",
212
+ id="framework-multi-select",
213
+ value=['K2105', 'L1101', 'L1202', 'L1507', 'L1508', 'L1509'],
214
+ data=[
215
+ {"value": "K2105", "label": "K2105"},
216
+ {"value": "L1101", "label": "L1101"},
217
+ {"value": "L1202", "label": "L1202"},
218
+ {"value": "L1507", "label": "L1507"},
219
+ {"value": "L1508", "label": "L1508"},
220
+ {"value": "L1509", "label": "L1509"},
221
+ ],
222
+ w=600,
223
+ mb=10,
224
+ styles={
225
+ "input": {"borderColor": dmc.DEFAULT_THEME["colors"]["orange"][2]},
226
+ "label": {"color": dmc.DEFAULT_THEME["colors"]["orange"][4]},
227
+ },
228
+ )
229
+ ), span=6),
230
+ dmc.GridCol(html.Div(dmc.Title(f"Le marché et les statistiques de l'emploi", order=1, size="30", my="20", style=styleTitle)), span=5),
231
+ dmc.GridCol(html.Div(theme_toggle, style=styleToggle), span=1),
232
+ dmc.GridCol(html.Div(
233
+ dcc.Graph(id="figRepartition",selectedData={'points': [{'hovertext': ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15','16','17','18','19','2A','2B','21','22','23','24','25','26','27','28','29','30','31','32','33','34','35','36','37','38','39','40','41','42','43','44','45','46','47','48','49','50','51','52','53','54','55','56','57','58','59','60','61','62','63','64','65','66','67','68','69','70','71','72','73','74','75','76','77','78','79','80','81','82','83','84','85','86','87','88','89','90','91','92','93','94','95','971','972','973','974']}]}),
234
+ ), span=6),
235
+ dmc.GridCol(html.Div(
236
+ dcc.Graph(id="figEmplois"),
237
+ ), span=6),
238
+ dmc.GridCol(html.Div(
239
+ dcc.Graph(id="figContrats"),
240
+ ), span=6),
241
+ dmc.GridCol(html.Div(
242
+ dcc.Graph(id="figExperiences"),
243
+ ), span=6),
244
+ dmc.GridCol(html.Div(
245
+ dcc.Graph(id="figCompetences"),
246
+ ), span=6),
247
+ dmc.GridCol(html.Div(
248
+ dcc.Graph(id="figTransversales"),
249
+ ), span=6),
250
+ ],
251
+ gutter="xs",
252
+ )
253
+ ],size="xxl",fluid=True
254
+ ),
255
+ ]
256
+ )
257
+ ],
258
+ id="mantine-provider",
259
+ forceColorScheme="dark",
260
+ theme={
261
+ "primaryColor": "indigo",
262
+ "fontFamily": "'Inter', sans-serif",
263
+ "components": {
264
+ "Button": {"defaultProps": {"fw": 400}},
265
+ "Alert": {"styles": {"title": {"fontWeight": 500}}},
266
+ "AvatarGroup": {"styles": {"truncated": {"fontWeight": 500}}},
267
+ "Badge": {"styles": {"root": {"fontWeight": 500}}},
268
+ "Progress": {"styles": {"label": {"fontWeight": 500}}},
269
+ "RingProgress": {"styles": {"label": {"fontWeight": 500}}},
270
+ "CodeHighlightTabs": {"styles": {"file": {"padding": 12}}},
271
+ "Table": {
272
+ "defaultProps": {
273
+ "highlightOnHover": True,
274
+ "withTableBorder": True,
275
+ "verticalSpacing": "sm",
276
+ "horizontalSpacing": "md",
277
+ }
278
+ },
279
+ },
280
+ # add your colors
281
+ "colors": {
282
+ "deepBlue": ["#E9EDFC", "#C1CCF6", "#99ABF0"], # 10 color elements
283
+ },
284
+ "shadows": {
285
+ # other shadows (xs, sm, lg) will be merged from default theme
286
+ "md": "1px 1px 3px rgba(0,0,0,.25)",
287
+ "xl": "5px 5px 3px rgba(0,0,0,.25)",
288
+ },
289
+ "headings": {
290
+ "fontFamily": "Roboto, sans-serif",
291
+ "sizes": {
292
+ "h1": {"fontSize": 30},
293
+ },
294
+ },
295
+ },
296
+ )
297
+ @callback(
298
+ Output("mantine-provider", "forceColorScheme"),
299
+ Input("color-scheme-toggle", "n_clicks"),
300
+ State("mantine-provider", "forceColorScheme"),
301
+ prevent_initial_call=True,
302
+ )
303
+ def switch_theme(_, theme):
304
+ return "dark" if theme == "light" else "light"
305
+
306
+ @callback(
307
+ Output(component_id='figRepartition', component_property='figure'),
308
+ Output(component_id='figCompetences', component_property='figure'),
309
+ Output(component_id='figTransversales', component_property='figure'),
310
+ Input(component_id='framework-multi-select', component_property='value'),
311
+ Input("mantine-provider", "forceColorScheme"),
312
+ )
313
+ def create_repartition(array_value, theme):
314
+ if theme == "dark":
315
+ template = "plotly_dark"
316
+ paper_bgcolor = 'rgba(36, 36, 36, 1)'
317
+ plot_bgcolor = 'rgba(36, 36, 36, 1)'
318
+ else:
319
+ template = "ggplot2"
320
+ paper_bgcolor = 'rgba(255, 255, 255, 1)'
321
+ plot_bgcolor = 'rgba(255, 255, 255, 1)'
322
+
323
+ df_FT = API_France_Travail(array_value)
324
+ df = df_FT[['intitule','typeContratLibelle','experienceLibelle','lieuTravail']].copy()
325
+ df["lieuTravail"] = df["lieuTravail"].apply(lambda x: x['libelle']).apply(lambda x: x[0:3]).apply(lambda x: x.strip())
326
+ df.drop(df[df['lieuTravail'] == 'Fra'].index, inplace = True)
327
+ df.drop(df[df['lieuTravail'] == 'FRA'].index, inplace = True)
328
+ df.drop(df[df['lieuTravail'] == 'Ile'].index, inplace = True)
329
+ df.drop(df[df['lieuTravail'] == 'Mar'].index, inplace = True)
330
+ df.drop(df[df['lieuTravail'] == 'Bou'].index, inplace = True)
331
+ df.drop(df[df['lieuTravail'] == '976'].index, inplace = True)
332
+
333
+ ######## localisation ########
334
+ ListCentroids = localisation()
335
+ df_localisation = df.groupby('lieuTravail').size().reset_index(name='obs')
336
+ df_localisation = df_localisation.sort_values(by=['lieuTravail'])
337
+ df_localisation['longitude'] = df_localisation['lieuTravail']
338
+ df_localisation['latitude'] = df_localisation['lieuTravail']
339
+ df_localisation["longitude"] = df_localisation['longitude'].apply(lambda x:[loc['Longitude'] for loc in ListCentroids if loc['ID'] == x]).apply(lambda x:''.join(map(str, x)))
340
+ df_localisation["longitude"] = pd.to_numeric(df_localisation["longitude"], downcast="float")
341
+ df_localisation["latitude"] = df_localisation['latitude'].apply(lambda x:[loc['Latitude'] for loc in ListCentroids if loc['ID'] == x]).apply(lambda x:''.join(map(str, x)))
342
+ df_localisation["latitude"] = pd.to_numeric(df_localisation["latitude"], downcast="float")
343
+ res = requests.get(
344
+ "https://raw.githubusercontent.com/codeforgermany/click_that_hood/main/public/data/france-regions.geojson"
345
+ )
346
+ fig_localisation = px.scatter_mapbox(df_localisation, lat="latitude", lon="longitude", height=600, template=template, title="La répartition géographique des emplois", hover_name="lieuTravail", size="obs").update_layout(
347
+ mapbox={
348
+ "style": "carto-positron",
349
+ "center": {"lon": 2, "lat" : 47},
350
+ "zoom": 4.5,
351
+ "layers": [
352
+ {
353
+ "source": res.json(),
354
+ "type": "line",
355
+ "color": "green",
356
+ "line": {"width": 0},
357
+ }
358
+ ],
359
+ },font=dict(size=10),paper_bgcolor=paper_bgcolor,autosize=True,clickmode='event+select'
360
+ )
361
+
362
+ df_FT.dropna(subset=['qualitesProfessionnelles','formations','competences'], inplace=True)
363
+ df_FT["competences"] = df_FT["competences"].apply(lambda x:[str(e['libelle']) for e in x]).apply(lambda x:'; '.join(map(str, x)))
364
+ df_FT["qualitesProfessionnelles"] = df_FT["qualitesProfessionnelles"].apply(lambda x:[str(e['libelle']) + ": " + str(e['description']) for e in x]).apply(lambda x:'; '.join(map(str, x)))
365
+
366
+ ######## Compétences professionnelles ########
367
+ df_comp = df_FT
368
+ df_comp['competences'] = df_FT['competences'].str.split(';')
369
+ df_comp = df_comp.explode('competences')
370
+ df_comp = df_comp.groupby('competences').size().reset_index(name='obs')
371
+ df_comp = df_comp.sort_values(by=['obs'])
372
+ df_comp = df_comp.iloc[-20:]
373
+ fig_competences = px.bar(df_comp, x='obs', y='competences', orientation='h', color='obs', height=600, template=template, title="Les principales compétences professionnelles", labels={'obs':'nombre'}, color_continuous_scale="Teal", text_auto=True).update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor,plot_bgcolor=plot_bgcolor,autosize=True).update_traces(hovertemplate=df_comp["competences"] + ' <br>Nombre : %{x}', y=[y[:100] + "..." for y in df_comp['competences']], showlegend=False)
374
+
375
+ ######## Compétences transversales ########
376
+ df_transversales = df_FT
377
+ df_transversales['qualitesProfessionnelles'] = df_FT['qualitesProfessionnelles'].str.split(';')
378
+ df_comptransversales = df_transversales.explode('qualitesProfessionnelles')
379
+ df_comptransversales = df_comptransversales.groupby('qualitesProfessionnelles').size().reset_index(name='obs')
380
+ df_comptransversales = df_comptransversales.sort_values(by=['obs'])
381
+ df_comptransversales = df_comptransversales.iloc[-20:]
382
+ fig_transversales = px.bar(df_comptransversales, x='obs', y='qualitesProfessionnelles', orientation='h', color='obs', height=600, template=template, title="Les principales compétences transversales", labels={'obs':'nombre'}, color_continuous_scale="Teal", text_auto=True).update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor,plot_bgcolor=plot_bgcolor,autosize=True).update_traces(hovertemplate=df_comptransversales["qualitesProfessionnelles"] + ' <br>Nombre : %{x}', y=[y[:80] + "..." for y in df_comptransversales["qualitesProfessionnelles"]], showlegend=False)
383
+
384
+ return fig_localisation, fig_competences, fig_transversales
385
+
386
+ def create_emploi(df, theme):
387
+ if theme == "dark":
388
+ template = "plotly_dark"
389
+ paper_bgcolor = 'rgba(36, 36, 36, 1)'
390
+ plot_bgcolor = 'rgba(36, 36, 36, 1)'
391
+ else:
392
+ template = "ggplot2"
393
+ paper_bgcolor = 'rgba(255, 255, 255, 1)'
394
+ plot_bgcolor = 'rgba(255, 255, 255, 1)'
395
+ ######## Emplois ########
396
+ df_intitule = df.groupby('intitule').size().reset_index(name='obs')
397
+ df_intitule = df_intitule.sort_values(by=['obs'])
398
+ df_intitule = df_intitule.iloc[-25:]
399
+ fig_intitule = px.bar(df_intitule, x='obs', y='intitule', height=600, orientation='h', color='obs', template=template, title="Les principaux emplois", labels={'obs':'nombre'}, color_continuous_scale="Teal", text_auto=True).update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor,plot_bgcolor=plot_bgcolor, autosize=True).update_traces(hovertemplate=df_intitule["intitule"] + ' <br>Nombre : %{x}', y=[y[:100] + "..." for y in df_intitule["intitule"]], showlegend=False)
400
+
401
+ return fig_intitule
402
+
403
+ def create_contrat(df, theme):
404
+ if theme == "dark":
405
+ template = "plotly_dark"
406
+ paper_bgcolor = 'rgba(36, 36, 36, 1)'
407
+ else:
408
+ template = "ggplot2"
409
+ paper_bgcolor = 'rgba(255, 255, 255, 1)'
410
+
411
+ ######## Types de contrat ########
412
+ df_contrat = df.groupby('typeContratLibelle').size().reset_index(name='obs')
413
+ fig_contrat = px.pie(df_contrat, names='typeContratLibelle', values='obs', color='obs', height=600, template=template, title="Les types de contrat", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe).update_traces(textposition='inside', textinfo='percent+label').update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor)
414
+
415
+ return fig_contrat
416
+
417
+ def create_experience(df, theme):
418
+ if theme == "dark":
419
+ template = "plotly_dark"
420
+ paper_bgcolor = 'rgba(36, 36, 36, 1)'
421
+ else:
422
+ template = "ggplot2"
423
+ paper_bgcolor = 'rgba(255, 255, 255, 1)'
424
+ ######## Expériences professionnelles ########
425
+ df_experience = df.groupby('experienceLibelle').size().reset_index(name='obs')
426
+ fig_experience = px.pie(df_experience, names='experienceLibelle', values='obs', color='obs', height=600, template=template, title="Les expériences professionnelles", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe).update_traces(textposition='inside', textinfo='percent+label').update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor)
427
+
428
+ return fig_experience
429
+
430
+ @callback(
431
+ Output(component_id='figEmplois', component_property='figure'),
432
+ Input('figRepartition', 'selectedData'),
433
+ Input(component_id='framework-multi-select', component_property='value'),
434
+ Input("mantine-provider", "forceColorScheme"),
435
+ )
436
+
437
+ def update_emploi(selectedData, array_value, theme):
438
+ options = []
439
+ if selectedData != None:
440
+ if type(selectedData['points'][0]['hovertext']) == str:
441
+ options.append(selectedData['points'][0]['hovertext'])
442
+ else:
443
+ options = selectedData['points'][0]['hovertext']
444
+ else:
445
+ options = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15','16','17','18','19','2A','2B','21','22','23','24','25','26','27','28','29','30','31','32','33','34','35','36','37','38','39','40','41','42','43','44','45','46','47','48','49','50','51','52','53','54','55','56','57','58','59','60','61','62','63','64','65','66','67','68','69','70','71','72','73','74','75','76','77','78','79','80','81','82','83','84','85','86','87','88','89','90','91','92','93','94','95','971','972','973','974']
446
+
447
+ df_FT = API_France_Travail(array_value)
448
+ df = df_FT[['intitule','typeContratLibelle','experienceLibelle','lieuTravail']].copy()
449
+ df["lieuTravail"] = df["lieuTravail"].apply(lambda x: x['libelle']).apply(lambda x: x[0:3]).apply(lambda x: x.strip())
450
+ df.drop(df[df['lieuTravail'] == 'Fra'].index, inplace = True)
451
+ df.drop(df[df['lieuTravail'] == 'FRA'].index, inplace = True)
452
+ df.drop(df[df['lieuTravail'] == 'Ile'].index, inplace = True)
453
+ df.drop(df[df['lieuTravail'] == 'Mar'].index, inplace = True)
454
+ df.drop(df[df['lieuTravail'] == 'Bou'].index, inplace = True)
455
+ df.drop(df[df['lieuTravail'] == '976'].index, inplace = True)
456
+ df = df[df['lieuTravail'].isin(options)]
457
+ return create_emploi(df, theme)
458
+
459
+ @callback(
460
+ Output(component_id='figContrats', component_property='figure'),
461
+ Input('figRepartition', 'selectedData'),
462
+ Input(component_id='framework-multi-select', component_property='value'),
463
+ Input("mantine-provider", "forceColorScheme"),
464
+ )
465
+
466
+ def update_contrat(selectedData, array_value, theme):
467
+ options = []
468
+ if selectedData != None:
469
+ if type(selectedData['points'][0]['hovertext']) == str:
470
+ options.append(selectedData['points'][0]['hovertext'])
471
+ else:
472
+ options = selectedData['points'][0]['hovertext']
473
+ else:
474
+ options = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15','16','17','18','19','2A','2B','21','22','23','24','25','26','27','28','29','30','31','32','33','34','35','36','37','38','39','40','41','42','43','44','45','46','47','48','49','50','51','52','53','54','55','56','57','58','59','60','61','62','63','64','65','66','67','68','69','70','71','72','73','74','75','76','77','78','79','80','81','82','83','84','85','86','87','88','89','90','91','92','93','94','95','971','972','973','974']
475
+
476
+ df_FT = API_France_Travail(array_value)
477
+ df = df_FT[['intitule','typeContratLibelle','experienceLibelle','lieuTravail']].copy()
478
+ df["lieuTravail"] = df["lieuTravail"].apply(lambda x: x['libelle']).apply(lambda x: x[0:3]).apply(lambda x: x.strip())
479
+ df.drop(df[df['lieuTravail'] == 'Fra'].index, inplace = True)
480
+ df.drop(df[df['lieuTravail'] == 'FRA'].index, inplace = True)
481
+ df.drop(df[df['lieuTravail'] == 'Ile'].index, inplace = True)
482
+ df.drop(df[df['lieuTravail'] == 'Mar'].index, inplace = True)
483
+ df.drop(df[df['lieuTravail'] == 'Bou'].index, inplace = True)
484
+ df.drop(df[df['lieuTravail'] == '976'].index, inplace = True)
485
+ df = df[df['lieuTravail'].isin(options)]
486
+
487
+ return create_contrat(df, theme)
488
+
489
+ @callback(
490
+ Output(component_id='figExperiences', component_property='figure'),
491
+ Input('figRepartition', 'selectedData'),
492
+ Input(component_id='framework-multi-select', component_property='value'),
493
+ Input("mantine-provider", "forceColorScheme"),
494
+ )
495
+
496
+ def update_experience(selectedData, array_value, theme):
497
+ options = []
498
+ if selectedData != None:
499
+ if type(selectedData['points'][0]['hovertext']) == str:
500
+ options.append(selectedData['points'][0]['hovertext'])
501
+ else:
502
+ options = selectedData['points'][0]['hovertext']
503
+ else:
504
+ options = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15','16','17','18','19','2A','2B','21','22','23','24','25','26','27','28','29','30','31','32','33','34','35','36','37','38','39','40','41','42','43','44','45','46','47','48','49','50','51','52','53','54','55','56','57','58','59','60','61','62','63','64','65','66','67','68','69','70','71','72','73','74','75','76','77','78','79','80','81','82','83','84','85','86','87','88','89','90','91','92','93','94','95','971','972','973','974']
505
+
506
+ df_FT = API_France_Travail(array_value)
507
+ df = df_FT[['intitule','typeContratLibelle','experienceLibelle','lieuTravail']].copy()
508
+ df["lieuTravail"] = df["lieuTravail"].apply(lambda x: x['libelle']).apply(lambda x: x[0:3]).apply(lambda x: x.strip())
509
+ df.drop(df[df['lieuTravail'] == 'Fra'].index, inplace = True)
510
+ df.drop(df[df['lieuTravail'] == 'FRA'].index, inplace = True)
511
+ df.drop(df[df['lieuTravail'] == 'Ile'].index, inplace = True)
512
+ df.drop(df[df['lieuTravail'] == 'Mar'].index, inplace = True)
513
+ df.drop(df[df['lieuTravail'] == 'Bou'].index, inplace = True)
514
+ df.drop(df[df['lieuTravail'] == '976'].index, inplace = True)
515
+ df = df[df['lieuTravail'].isin(options)]
516
+
517
+ return create_experience(df, theme)
518
+
519
+ if __name__ == '__main__':
520
+ app.run(debug=True)
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ dash
2
+ dash-mantine-components==0.14.6
3
+ dash-iconify
4
+ pandas
5
+ api-offres-emploi==0.0.2
6
+ plotly
7
+ python-dotenv