datacipen commited on
Commit
96db95c
·
verified ·
1 Parent(s): 332b6b7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +523 -520
app.py CHANGED
@@ -1,520 +1,523 @@
1
- import os
2
- import datetime
3
- import requests
4
- from offres_emploi import Api
5
- from offres_emploi.utils import dt_to_str_iso
6
- from dash import Dash, html, dcc, callback, Output, Input, dash_table, State, _dash_renderer
7
- import plotly.express as px
8
- import dash_mantine_components as dmc
9
- from dash_iconify import DashIconify
10
- import pandas as pd
11
- from dotenv import load_dotenv
12
- _dash_renderer._set_react_version("18.2.0")
13
- import plotly.io as pio
14
-
15
- # Create a customized version of the plotly_dark theme with a modified background color
16
- custom_plotly_dark_theme = {
17
- "layout": {
18
- "paper_bgcolor": "#1E1E1E", # Update the paper background color
19
- "plot_bgcolor": "#1E1E1E", # Update the plot background color
20
- "font": {
21
- "color": "#FFFFFF" # Update the font color
22
- },
23
- "xaxis": {
24
- "gridcolor": "#333333", # Update the x-axis grid color
25
- "zerolinecolor": "#666666" # Update the x-axis zero line color
26
- },
27
- "yaxis": {
28
- "gridcolor": "#333333", # Update the y-axis grid color
29
- "zerolinecolor": "#666666" # Update the y-axis zero line color
30
- }
31
- }
32
- }
33
-
34
- # Apply the customized theme to your Plotly figures
35
- pio.templates["custom_plotly_dark"] = custom_plotly_dark_theme
36
- pio.templates.default = "custom_plotly_dark"
37
-
38
- load_dotenv()
39
-
40
- def localisation():
41
- ListCentroids = [
42
- { "ID": "01", "Longitude": 5.3245259, "Latitude":46.0666003 },
43
- { "ID": "02", "Longitude": 3.5960246, "Latitude": 49.5519632 },
44
- { "ID": "03", "Longitude": 3.065278, "Latitude": 46.4002783 },
45
- { "ID": "04", "Longitude": 6.2237688, "Latitude": 44.1105837 },
46
- { "ID": "05", "Longitude": 6.2018836, "Latitude": 44.6630487 },
47
- { "ID": "06", "Longitude": 7.0755745, "Latitude":43.9463082 },
48
- { "ID": "07", "Longitude": 4.3497308, "Latitude": 44.7626044 },
49
- { "ID": "08", "Longitude": 4.6234893, "Latitude": 49.6473884 },
50
- { "ID": "09", "Longitude": 1.6037147, "Latitude": 42.9696091 },
51
- { "ID": "10", "Longitude": 4.1394954, "Latitude": 48.2963286 },
52
- { "ID": "11", "Longitude": 2.3140163, "Latitude": 43.1111427 },
53
- { "ID": "12", "Longitude": 2.7365234, "Latitude": 44.2786323 },
54
- { "ID": "13", "Longitude": 5.0515492, "Latitude": 43.5539098 },
55
- { "ID": "14", "Longitude": -0.3930779, "Latitude": 49.1024215 },
56
- { "ID": "15", "Longitude": 2.6367657, "Latitude": 44.9643217 },
57
- { "ID": "16", "Longitude": 0.180475, "Latitude": 45.706264 },
58
- { "ID": "17", "Longitude": -0.7082589, "Latitude": 45.7629699 },
59
- { "ID": "18", "Longitude": 2.5292424, "Latitude": 47.0926687 },
60
- { "ID": "19", "Longitude": 1.8841811, "Latitude": 45.3622055 },
61
- { "ID": "2A", "Longitude": 8.9906834, "Latitude": 41.8619761 },
62
- { "ID": "2B", "Longitude": 9.275489, "Latitude": 42.372014 },
63
- { "ID": "21", "Longitude": 4.7870471, "Latitude": 47.4736746 },
64
- { "ID": "22", "Longitude": -2.9227591, "Latitude": 48.408402 },
65
- { "ID": "23", "Longitude": 2.0265508, "Latitude": 46.0837382 },
66
- { "ID": "24", "Longitude": 0.7140145, "Latitude": 45.1489678 },
67
- { "ID": "25", "Longitude": 6.3991355, "Latitude": 47.1879451 },
68
- { "ID": "26", "Longitude": 5.1717552, "Latitude": 44.8055408 },
69
- { "ID": "27", "Longitude": 0.9488116, "Latitude": 49.1460288 },
70
- { "ID": "28", "Longitude": 1.2793491, "Latitude": 48.3330017 },
71
- { "ID": "29", "Longitude": -4.1577074, "Latitude": 48.2869945 },
72
- { "ID": "30", "Longitude": 4.2650329, "Latitude": 43.9636468 },
73
- { "ID": "31", "Longitude": 1.2728958, "Latitude": 43.3671081 },
74
- { "ID": "32", "Longitude": 0.4220039, "Latitude": 43.657141 },
75
- { "ID": "33", "Longitude": -0.5760716, "Latitude": 44.8406068 },
76
- { "ID": "34", "Longitude": 3.4197556, "Latitude": 43.62585 },
77
- { "ID": "35", "Longitude": -1.6443812, "Latitude": 48.1801254 },
78
- { "ID": "36", "Longitude": 1.6509938, "Latitude": 46.7964222 },
79
- { "ID": "37", "Longitude": 0.7085619, "Latitude": 47.2802601 },
80
- { "ID": "38", "Longitude": 5.6230772, "Latitude": 45.259805 },
81
- { "ID": "39", "Longitude": 5.612871, "Latitude": 46.7398138 },
82
- { "ID": "40", "Longitude": -0.8771738, "Latitude": 44.0161251 },
83
- { "ID": "41", "Longitude": 1.3989178, "Latitude": 47.5866519 },
84
- { "ID": "42", "Longitude": 4.2262355, "Latitude": 45.7451186 },
85
- { "ID": "43", "Longitude": 3.8118151, "Latitude": 45.1473029 },
86
- { "ID": "44", "Longitude": -1.7642949, "Latitude": 47.4616509 },
87
- { "ID": "45", "Longitude": 2.2372695, "Latitude": 47.8631395 },
88
- { "ID": "46", "Longitude": 1.5732157, "Latitude": 44.6529284 },
89
- { "ID": "47", "Longitude": 0.4788052, "Latitude": 44.4027215 },
90
- { "ID": "48", "Longitude": 3.4991239, "Latitude": 44.5191573 },
91
- { "ID": "49", "Longitude": -0.5136056, "Latitude": 47.3945201 },
92
- { "ID": "50", "Longitude": -1.3203134, "Latitude": 49.0162072 },
93
- { "ID": "51", "Longitude": 4.2966555, "Latitude": 48.9479636 },
94
- { "ID": "52", "Longitude": 5.1325796, "Latitude": 48.1077196 },
95
- { "ID": "53", "Longitude": -0.7073921, "Latitude": 48.1225795 },
96
- { "ID": "54", "Longitude": 6.144792, "Latitude": 48.7995163 },
97
- { "ID": "55", "Longitude": 5.2888292, "Latitude": 49.0074545 },
98
- { "ID": "56", "Longitude": -2.8746938, "Latitude": 47.9239486 },
99
- { "ID": "57", "Longitude": 6.5610683, "Latitude": 49.0399233 },
100
- { "ID": "58", "Longitude": 3.5544332, "Latitude": 47.1122301 },
101
- { "ID": "59", "Longitude": 3.2466616, "Latitude": 50.4765414 },
102
- { "ID": "60", "Longitude": 2.4161734, "Latitude": 49.3852913 },
103
- { "ID": "61", "Longitude": 0.2248368, "Latitude": 48.5558919 },
104
- { "ID": "62", "Longitude": 2.2555152, "Latitude": 50.4646795 },
105
- { "ID": "63", "Longitude": 3.1322144, "Latitude": 45.7471805 },
106
- { "ID": "64", "Longitude": -0.793633, "Latitude": 43.3390984 },
107
- { "ID": "65", "Longitude": 0.1478724, "Latitude": 43.0526238 },
108
- { "ID": "66", "Longitude": 2.5239855, "Latitude": 42.5825094 },
109
- { "ID": "67", "Longitude": 7.5962225, "Latitude": 48.662515 },
110
- { "ID": "68", "Longitude": 7.2656284, "Latitude": 47.8586205 },
111
- { "ID": "69", "Longitude": 4.6859896, "Latitude": 45.8714754 },
112
- { "ID": "70", "Longitude": 6.1388571, "Latitude": 47.5904191 },
113
- { "ID": "71", "Longitude": 4.6394021, "Latitude": 46.5951234 },
114
- { "ID": "72", "Longitude": 0.1947322, "Latitude": 48.0041421 },
115
- { "ID": "73", "Longitude": 6.4662232, "Latitude": 45.4956055 },
116
- { "ID": "74", "Longitude": 6.3609606, "Latitude": 46.1045902 },
117
- { "ID": "75", "Longitude": 2.3416082, "Latitude": 48.8626759 },
118
- { "ID": "76", "Longitude": 1.025579, "Latitude": 49.6862911 },
119
- { "ID": "77", "Longitude": 2.8977309, "Latitude": 48.5957831 },
120
- { "ID": "78", "Longitude": 1.8080138, "Latitude": 48.7831982 },
121
- { "ID": "79", "Longitude": -0.3159014, "Latitude": 46.5490257 },
122
- { "ID": "80", "Longitude": 2.3380595, "Latitude": 49.9783317 },
123
- { "ID": "81", "Longitude": 2.2072751, "Latitude": 43.8524305 },
124
- { "ID": "82", "Longitude": 1.2649374, "Latitude": 44.1254902 },
125
- { "ID": "83", "Longitude": 6.1486127, "Latitude": 43.5007903 },
126
- { "ID": "84", "Longitude": 5.065418, "Latitude": 44.0001599 },
127
- { "ID": "85", "Longitude": -1.3956692, "Latitude": 46.5929102 },
128
- { "ID": "86", "Longitude": 0.4953679, "Latitude": 46.5719095 },
129
- { "ID": "87", "Longitude": 1.2500647, "Latitude": 45.9018644 },
130
- { "ID": "88", "Longitude": 6.349702, "Latitude": 48.1770451 },
131
- { "ID": "89", "Longitude": 3.5634078, "Latitude": 47.8474664 },
132
- { "ID": "90", "Longitude": 6.9498114, "Latitude": 47.6184394 },
133
- { "ID": "91", "Longitude": 2.2714555, "Latitude": 48.5203114 },
134
- { "ID": "92", "Longitude": 2.2407148, "Latitude": 48.835321 },
135
- { "ID": "93", "Longitude": 2.4811577, "Latitude": 48.9008719 },
136
- { "ID": "94", "Longitude": 2.4549766, "Latitude": 48.7832368 },
137
- { "ID": "95", "Longitude": 2.1802056, "Latitude": 49.076488 },
138
- { "ID": "974", "Longitude": 55.536384, "Latitude": -21.115141 },
139
- { "ID": "973", "Longitude": -53.125782, "Latitude": 3.933889 },
140
- { "ID": "972", "Longitude": -61.024174, "Latitude": 14.641528 },
141
- { "ID": "971", "Longitude": -61.551, "Latitude": 16.265 }
142
- ]
143
-
144
- return ListCentroids
145
-
146
- def connexion_France_Travail():
147
- client = Api(client_id=os.getenv('POLE_EMPLOI_CLIENT_ID'),
148
- client_secret=os.getenv('POLE_EMPLOI_CLIENT_SECRET'))
149
- return client
150
-
151
- def API_France_Travail(romeListArray):
152
- client = connexion_France_Travail()
153
- todayDate = datetime.datetime.today()
154
- month, year = (todayDate.month-1, todayDate.year) if todayDate.month != 1 else (12, todayDate.year-1)
155
- start_dt = todayDate.replace(day=1, month=month, year=year)
156
- end_dt = datetime.datetime.today()
157
- results = []
158
- for k in romeListArray:
159
- if k[0:1] == ' ':
160
- k = k[1:]
161
- params = {"motsCles": k.replace('/', '').replace('-', '').replace(',', '').replace(' ', ','),'minCreationDate': dt_to_str_iso(start_dt),'maxCreationDate': dt_to_str_iso(end_dt),'range':'0-149'}
162
- try:
163
- search_on_big_data = client.search(params=params)
164
- results += search_on_big_data["resultats"]
165
- except:
166
- print("Il n'y a pas d'offres d'emploi.")
167
-
168
- results_df = pd.DataFrame(results)
169
- return results_df
170
-
171
- theme_toggle = dmc.Tooltip(
172
- dmc.ActionIcon(
173
- [
174
- dmc.Paper(DashIconify(icon="radix-icons:sun", width=25), darkHidden=True),
175
- dmc.Paper(DashIconify(icon="radix-icons:moon", width=25), lightHidden=True),
176
- ],
177
- variant="transparent",
178
- color="yellow",
179
- id="color-scheme-toggle",
180
- size="lg",
181
- ms="auto",
182
- ),
183
- label="Changez de thème",
184
- position="left",
185
- withArrow=True,
186
- arrowSize=6,
187
- )
188
-
189
- styleTitle = {
190
- "textAlign": "center",
191
- "color": dmc.DEFAULT_THEME["colors"]["orange"][4]
192
- }
193
-
194
- styleToggle = {
195
- "marginTop":"25px",
196
- "textAlign": "right",
197
- }
198
- app = Dash(external_stylesheets=dmc.styles.ALL)
199
-
200
- app.layout = dmc.MantineProvider(
201
- [
202
- html.Div(
203
- children=[
204
- dmc.Container(
205
- children=[
206
- dmc.Grid(
207
- children=[
208
- dmc.GridCol(html.Div(
209
- dmc.MultiSelect(
210
- label="Selectionnez vos Codes ROME",
211
- placeholder="Select vos Codes ROME parmi la liste",
212
- id="framework-multi-select",
213
- value=['K2105', 'L1101', 'L1202', 'L1507', 'L1508', 'L1509'],
214
- data=[
215
- {"value": "K2105", "label": "K2105"},
216
- {"value": "L1101", "label": "L1101"},
217
- {"value": "L1202", "label": "L1202"},
218
- {"value": "L1507", "label": "L1507"},
219
- {"value": "L1508", "label": "L1508"},
220
- {"value": "L1509", "label": "L1509"},
221
- ],
222
- w=600,
223
- mb=10,
224
- styles={
225
- "input": {"borderColor": dmc.DEFAULT_THEME["colors"]["orange"][2]},
226
- "label": {"color": dmc.DEFAULT_THEME["colors"]["orange"][4]},
227
- },
228
- )
229
- ), span=6),
230
- dmc.GridCol(html.Div(dmc.Title(f"Le marché et les statistiques de l'emploi", order=1, size="30", my="20", style=styleTitle)), span=5),
231
- dmc.GridCol(html.Div(theme_toggle, style=styleToggle), span=1),
232
- dmc.GridCol(html.Div(
233
- dcc.Graph(id="figRepartition",selectedData={'points': [{'hovertext': ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15','16','17','18','19','2A','2B','21','22','23','24','25','26','27','28','29','30','31','32','33','34','35','36','37','38','39','40','41','42','43','44','45','46','47','48','49','50','51','52','53','54','55','56','57','58','59','60','61','62','63','64','65','66','67','68','69','70','71','72','73','74','75','76','77','78','79','80','81','82','83','84','85','86','87','88','89','90','91','92','93','94','95','971','972','973','974']}]}),
234
- ), span=6),
235
- dmc.GridCol(html.Div(
236
- dcc.Graph(id="figEmplois"),
237
- ), span=6),
238
- dmc.GridCol(html.Div(
239
- dcc.Graph(id="figContrats"),
240
- ), span=6),
241
- dmc.GridCol(html.Div(
242
- dcc.Graph(id="figExperiences"),
243
- ), span=6),
244
- dmc.GridCol(html.Div(
245
- dcc.Graph(id="figCompetences"),
246
- ), span=6),
247
- dmc.GridCol(html.Div(
248
- dcc.Graph(id="figTransversales"),
249
- ), span=6),
250
- ],
251
- gutter="xs",
252
- )
253
- ],size="xxl",fluid=True
254
- ),
255
- ]
256
- )
257
- ],
258
- id="mantine-provider",
259
- forceColorScheme="dark",
260
- theme={
261
- "primaryColor": "indigo",
262
- "fontFamily": "'Inter', sans-serif",
263
- "components": {
264
- "Button": {"defaultProps": {"fw": 400}},
265
- "Alert": {"styles": {"title": {"fontWeight": 500}}},
266
- "AvatarGroup": {"styles": {"truncated": {"fontWeight": 500}}},
267
- "Badge": {"styles": {"root": {"fontWeight": 500}}},
268
- "Progress": {"styles": {"label": {"fontWeight": 500}}},
269
- "RingProgress": {"styles": {"label": {"fontWeight": 500}}},
270
- "CodeHighlightTabs": {"styles": {"file": {"padding": 12}}},
271
- "Table": {
272
- "defaultProps": {
273
- "highlightOnHover": True,
274
- "withTableBorder": True,
275
- "verticalSpacing": "sm",
276
- "horizontalSpacing": "md",
277
- }
278
- },
279
- },
280
- # add your colors
281
- "colors": {
282
- "deepBlue": ["#E9EDFC", "#C1CCF6", "#99ABF0"], # 10 color elements
283
- },
284
- "shadows": {
285
- # other shadows (xs, sm, lg) will be merged from default theme
286
- "md": "1px 1px 3px rgba(0,0,0,.25)",
287
- "xl": "5px 5px 3px rgba(0,0,0,.25)",
288
- },
289
- "headings": {
290
- "fontFamily": "Roboto, sans-serif",
291
- "sizes": {
292
- "h1": {"fontSize": 30},
293
- },
294
- },
295
- },
296
- )
297
- @callback(
298
- Output("mantine-provider", "forceColorScheme"),
299
- Input("color-scheme-toggle", "n_clicks"),
300
- State("mantine-provider", "forceColorScheme"),
301
- prevent_initial_call=True,
302
- )
303
- def switch_theme(_, theme):
304
- return "dark" if theme == "light" else "light"
305
-
306
- @callback(
307
- Output(component_id='figRepartition', component_property='figure'),
308
- Output(component_id='figCompetences', component_property='figure'),
309
- Output(component_id='figTransversales', component_property='figure'),
310
- Input(component_id='framework-multi-select', component_property='value'),
311
- Input("mantine-provider", "forceColorScheme"),
312
- )
313
- def create_repartition(array_value, theme):
314
- if theme == "dark":
315
- template = "plotly_dark"
316
- paper_bgcolor = 'rgba(36, 36, 36, 1)'
317
- plot_bgcolor = 'rgba(36, 36, 36, 1)'
318
- else:
319
- template = "ggplot2"
320
- paper_bgcolor = 'rgba(255, 255, 255, 1)'
321
- plot_bgcolor = 'rgba(255, 255, 255, 1)'
322
-
323
- df_FT = API_France_Travail(array_value)
324
- df = df_FT[['intitule','typeContratLibelle','experienceLibelle','lieuTravail']].copy()
325
- df["lieuTravail"] = df["lieuTravail"].apply(lambda x: x['libelle']).apply(lambda x: x[0:3]).apply(lambda x: x.strip())
326
- df.drop(df[df['lieuTravail'] == 'Fra'].index, inplace = True)
327
- df.drop(df[df['lieuTravail'] == 'FRA'].index, inplace = True)
328
- df.drop(df[df['lieuTravail'] == 'Ile'].index, inplace = True)
329
- df.drop(df[df['lieuTravail'] == 'Mar'].index, inplace = True)
330
- df.drop(df[df['lieuTravail'] == 'Bou'].index, inplace = True)
331
- df.drop(df[df['lieuTravail'] == '976'].index, inplace = True)
332
-
333
- ######## localisation ########
334
- ListCentroids = localisation()
335
- df_localisation = df.groupby('lieuTravail').size().reset_index(name='obs')
336
- df_localisation = df_localisation.sort_values(by=['lieuTravail'])
337
- df_localisation['longitude'] = df_localisation['lieuTravail']
338
- df_localisation['latitude'] = df_localisation['lieuTravail']
339
- df_localisation["longitude"] = df_localisation['longitude'].apply(lambda x:[loc['Longitude'] for loc in ListCentroids if loc['ID'] == x]).apply(lambda x:''.join(map(str, x)))
340
- df_localisation["longitude"] = pd.to_numeric(df_localisation["longitude"], downcast="float")
341
- df_localisation["latitude"] = df_localisation['latitude'].apply(lambda x:[loc['Latitude'] for loc in ListCentroids if loc['ID'] == x]).apply(lambda x:''.join(map(str, x)))
342
- df_localisation["latitude"] = pd.to_numeric(df_localisation["latitude"], downcast="float")
343
- res = requests.get(
344
- "https://raw.githubusercontent.com/codeforgermany/click_that_hood/main/public/data/france-regions.geojson"
345
- )
346
- fig_localisation = px.scatter_mapbox(df_localisation, lat="latitude", lon="longitude", height=600, template=template, title="La répartition géographique des emplois", hover_name="lieuTravail", size="obs").update_layout(
347
- mapbox={
348
- "style": "carto-positron",
349
- "center": {"lon": 2, "lat" : 47},
350
- "zoom": 4.5,
351
- "layers": [
352
- {
353
- "source": res.json(),
354
- "type": "line",
355
- "color": "green",
356
- "line": {"width": 0},
357
- }
358
- ],
359
- },font=dict(size=10),paper_bgcolor=paper_bgcolor,autosize=True,clickmode='event+select'
360
- )
361
-
362
- df_FT.dropna(subset=['qualitesProfessionnelles','formations','competences'], inplace=True)
363
- df_FT["competences"] = df_FT["competences"].apply(lambda x:[str(e['libelle']) for e in x]).apply(lambda x:'; '.join(map(str, x)))
364
- df_FT["qualitesProfessionnelles"] = df_FT["qualitesProfessionnelles"].apply(lambda x:[str(e['libelle']) + ": " + str(e['description']) for e in x]).apply(lambda x:'; '.join(map(str, x)))
365
-
366
- ######## Compétences professionnelles ########
367
- df_comp = df_FT
368
- df_comp['competences'] = df_FT['competences'].str.split(';')
369
- df_comp = df_comp.explode('competences')
370
- df_comp = df_comp.groupby('competences').size().reset_index(name='obs')
371
- df_comp = df_comp.sort_values(by=['obs'])
372
- df_comp = df_comp.iloc[-20:]
373
- fig_competences = px.bar(df_comp, x='obs', y='competences', orientation='h', color='obs', height=600, template=template, title="Les principales compétences professionnelles", labels={'obs':'nombre'}, color_continuous_scale="Teal", text_auto=True).update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor,plot_bgcolor=plot_bgcolor,autosize=True).update_traces(hovertemplate=df_comp["competences"] + ' <br>Nombre : %{x}', y=[y[:100] + "..." for y in df_comp['competences']], showlegend=False)
374
-
375
- ######## Compétences transversales ########
376
- df_transversales = df_FT
377
- df_transversales['qualitesProfessionnelles'] = df_FT['qualitesProfessionnelles'].str.split(';')
378
- df_comptransversales = df_transversales.explode('qualitesProfessionnelles')
379
- df_comptransversales = df_comptransversales.groupby('qualitesProfessionnelles').size().reset_index(name='obs')
380
- df_comptransversales = df_comptransversales.sort_values(by=['obs'])
381
- df_comptransversales = df_comptransversales.iloc[-20:]
382
- fig_transversales = px.bar(df_comptransversales, x='obs', y='qualitesProfessionnelles', orientation='h', color='obs', height=600, template=template, title="Les principales compétences transversales", labels={'obs':'nombre'}, color_continuous_scale="Teal", text_auto=True).update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor,plot_bgcolor=plot_bgcolor,autosize=True).update_traces(hovertemplate=df_comptransversales["qualitesProfessionnelles"] + ' <br>Nombre : %{x}', y=[y[:80] + "..." for y in df_comptransversales["qualitesProfessionnelles"]], showlegend=False)
383
-
384
- return fig_localisation, fig_competences, fig_transversales
385
-
386
- def create_emploi(df, theme):
387
- if theme == "dark":
388
- template = "plotly_dark"
389
- paper_bgcolor = 'rgba(36, 36, 36, 1)'
390
- plot_bgcolor = 'rgba(36, 36, 36, 1)'
391
- else:
392
- template = "ggplot2"
393
- paper_bgcolor = 'rgba(255, 255, 255, 1)'
394
- plot_bgcolor = 'rgba(255, 255, 255, 1)'
395
- ######## Emplois ########
396
- df_intitule = df.groupby('intitule').size().reset_index(name='obs')
397
- df_intitule = df_intitule.sort_values(by=['obs'])
398
- df_intitule = df_intitule.iloc[-25:]
399
- fig_intitule = px.bar(df_intitule, x='obs', y='intitule', height=600, orientation='h', color='obs', template=template, title="Les principaux emplois", labels={'obs':'nombre'}, color_continuous_scale="Teal", text_auto=True).update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor,plot_bgcolor=plot_bgcolor, autosize=True).update_traces(hovertemplate=df_intitule["intitule"] + ' <br>Nombre : %{x}', y=[y[:100] + "..." for y in df_intitule["intitule"]], showlegend=False)
400
-
401
- return fig_intitule
402
-
403
- def create_contrat(df, theme):
404
- if theme == "dark":
405
- template = "plotly_dark"
406
- paper_bgcolor = 'rgba(36, 36, 36, 1)'
407
- else:
408
- template = "ggplot2"
409
- paper_bgcolor = 'rgba(255, 255, 255, 1)'
410
-
411
- ######## Types de contrat ########
412
- df_contrat = df.groupby('typeContratLibelle').size().reset_index(name='obs')
413
- fig_contrat = px.pie(df_contrat, names='typeContratLibelle', values='obs', color='obs', height=600, template=template, title="Les types de contrat", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe).update_traces(textposition='inside', textinfo='percent+label').update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor)
414
-
415
- return fig_contrat
416
-
417
- def create_experience(df, theme):
418
- if theme == "dark":
419
- template = "plotly_dark"
420
- paper_bgcolor = 'rgba(36, 36, 36, 1)'
421
- else:
422
- template = "ggplot2"
423
- paper_bgcolor = 'rgba(255, 255, 255, 1)'
424
- ######## Expériences professionnelles ########
425
- df_experience = df.groupby('experienceLibelle').size().reset_index(name='obs')
426
- fig_experience = px.pie(df_experience, names='experienceLibelle', values='obs', color='obs', height=600, template=template, title="Les expériences professionnelles", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe).update_traces(textposition='inside', textinfo='percent+label').update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor)
427
-
428
- return fig_experience
429
-
430
- @callback(
431
- Output(component_id='figEmplois', component_property='figure'),
432
- Input('figRepartition', 'selectedData'),
433
- Input(component_id='framework-multi-select', component_property='value'),
434
- Input("mantine-provider", "forceColorScheme"),
435
- )
436
-
437
- def update_emploi(selectedData, array_value, theme):
438
- options = []
439
- if selectedData != None:
440
- if type(selectedData['points'][0]['hovertext']) == str:
441
- options.append(selectedData['points'][0]['hovertext'])
442
- else:
443
- options = selectedData['points'][0]['hovertext']
444
- else:
445
- options = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15','16','17','18','19','2A','2B','21','22','23','24','25','26','27','28','29','30','31','32','33','34','35','36','37','38','39','40','41','42','43','44','45','46','47','48','49','50','51','52','53','54','55','56','57','58','59','60','61','62','63','64','65','66','67','68','69','70','71','72','73','74','75','76','77','78','79','80','81','82','83','84','85','86','87','88','89','90','91','92','93','94','95','971','972','973','974']
446
-
447
- df_FT = API_France_Travail(array_value)
448
- df = df_FT[['intitule','typeContratLibelle','experienceLibelle','lieuTravail']].copy()
449
- df["lieuTravail"] = df["lieuTravail"].apply(lambda x: x['libelle']).apply(lambda x: x[0:3]).apply(lambda x: x.strip())
450
- df.drop(df[df['lieuTravail'] == 'Fra'].index, inplace = True)
451
- df.drop(df[df['lieuTravail'] == 'FRA'].index, inplace = True)
452
- df.drop(df[df['lieuTravail'] == 'Ile'].index, inplace = True)
453
- df.drop(df[df['lieuTravail'] == 'Mar'].index, inplace = True)
454
- df.drop(df[df['lieuTravail'] == 'Bou'].index, inplace = True)
455
- df.drop(df[df['lieuTravail'] == '976'].index, inplace = True)
456
- df = df[df['lieuTravail'].isin(options)]
457
- return create_emploi(df, theme)
458
-
459
- @callback(
460
- Output(component_id='figContrats', component_property='figure'),
461
- Input('figRepartition', 'selectedData'),
462
- Input(component_id='framework-multi-select', component_property='value'),
463
- Input("mantine-provider", "forceColorScheme"),
464
- )
465
-
466
- def update_contrat(selectedData, array_value, theme):
467
- options = []
468
- if selectedData != None:
469
- if type(selectedData['points'][0]['hovertext']) == str:
470
- options.append(selectedData['points'][0]['hovertext'])
471
- else:
472
- options = selectedData['points'][0]['hovertext']
473
- else:
474
- options = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15','16','17','18','19','2A','2B','21','22','23','24','25','26','27','28','29','30','31','32','33','34','35','36','37','38','39','40','41','42','43','44','45','46','47','48','49','50','51','52','53','54','55','56','57','58','59','60','61','62','63','64','65','66','67','68','69','70','71','72','73','74','75','76','77','78','79','80','81','82','83','84','85','86','87','88','89','90','91','92','93','94','95','971','972','973','974']
475
-
476
- df_FT = API_France_Travail(array_value)
477
- df = df_FT[['intitule','typeContratLibelle','experienceLibelle','lieuTravail']].copy()
478
- df["lieuTravail"] = df["lieuTravail"].apply(lambda x: x['libelle']).apply(lambda x: x[0:3]).apply(lambda x: x.strip())
479
- df.drop(df[df['lieuTravail'] == 'Fra'].index, inplace = True)
480
- df.drop(df[df['lieuTravail'] == 'FRA'].index, inplace = True)
481
- df.drop(df[df['lieuTravail'] == 'Ile'].index, inplace = True)
482
- df.drop(df[df['lieuTravail'] == 'Mar'].index, inplace = True)
483
- df.drop(df[df['lieuTravail'] == 'Bou'].index, inplace = True)
484
- df.drop(df[df['lieuTravail'] == '976'].index, inplace = True)
485
- df = df[df['lieuTravail'].isin(options)]
486
-
487
- return create_contrat(df, theme)
488
-
489
- @callback(
490
- Output(component_id='figExperiences', component_property='figure'),
491
- Input('figRepartition', 'selectedData'),
492
- Input(component_id='framework-multi-select', component_property='value'),
493
- Input("mantine-provider", "forceColorScheme"),
494
- )
495
-
496
- def update_experience(selectedData, array_value, theme):
497
- options = []
498
- if selectedData != None:
499
- if type(selectedData['points'][0]['hovertext']) == str:
500
- options.append(selectedData['points'][0]['hovertext'])
501
- else:
502
- options = selectedData['points'][0]['hovertext']
503
- else:
504
- options = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15','16','17','18','19','2A','2B','21','22','23','24','25','26','27','28','29','30','31','32','33','34','35','36','37','38','39','40','41','42','43','44','45','46','47','48','49','50','51','52','53','54','55','56','57','58','59','60','61','62','63','64','65','66','67','68','69','70','71','72','73','74','75','76','77','78','79','80','81','82','83','84','85','86','87','88','89','90','91','92','93','94','95','971','972','973','974']
505
-
506
- df_FT = API_France_Travail(array_value)
507
- df = df_FT[['intitule','typeContratLibelle','experienceLibelle','lieuTravail']].copy()
508
- df["lieuTravail"] = df["lieuTravail"].apply(lambda x: x['libelle']).apply(lambda x: x[0:3]).apply(lambda x: x.strip())
509
- df.drop(df[df['lieuTravail'] == 'Fra'].index, inplace = True)
510
- df.drop(df[df['lieuTravail'] == 'FRA'].index, inplace = True)
511
- df.drop(df[df['lieuTravail'] == 'Ile'].index, inplace = True)
512
- df.drop(df[df['lieuTravail'] == 'Mar'].index, inplace = True)
513
- df.drop(df[df['lieuTravail'] == 'Bou'].index, inplace = True)
514
- df.drop(df[df['lieuTravail'] == '976'].index, inplace = True)
515
- df = df[df['lieuTravail'].isin(options)]
516
-
517
- return create_experience(df, theme)
518
-
519
- if __name__ == '__main__':
520
- app.run(debug=True)
 
 
 
 
1
+ import os
2
+ import datetime
3
+ import requests
4
+ from offres_emploi import Api
5
+ from offres_emploi.utils import dt_to_str_iso
6
+ from dash import Dash, html, dcc, callback, Output, Input, dash_table, State, _dash_renderer
7
+ import plotly.express as px
8
+ import dash_mantine_components as dmc
9
+ from dash_iconify import DashIconify
10
+ import pandas as pd
11
+ from dotenv import load_dotenv
12
+ _dash_renderer._set_react_version("18.2.0")
13
+ import plotly.io as pio
14
+ from flask import Flask
15
+
16
+ server = Flask(__name__)
17
+
18
+ # Create a customized version of the plotly_dark theme with a modified background color
19
+ custom_plotly_dark_theme = {
20
+ "layout": {
21
+ "paper_bgcolor": "#1E1E1E", # Update the paper background color
22
+ "plot_bgcolor": "#1E1E1E", # Update the plot background color
23
+ "font": {
24
+ "color": "#FFFFFF" # Update the font color
25
+ },
26
+ "xaxis": {
27
+ "gridcolor": "#333333", # Update the x-axis grid color
28
+ "zerolinecolor": "#666666" # Update the x-axis zero line color
29
+ },
30
+ "yaxis": {
31
+ "gridcolor": "#333333", # Update the y-axis grid color
32
+ "zerolinecolor": "#666666" # Update the y-axis zero line color
33
+ }
34
+ }
35
+ }
36
+
37
+ # Apply the customized theme to your Plotly figures
38
+ pio.templates["custom_plotly_dark"] = custom_plotly_dark_theme
39
+ pio.templates.default = "custom_plotly_dark"
40
+
41
+ load_dotenv()
42
+
43
+ def localisation():
44
+ ListCentroids = [
45
+ { "ID": "01", "Longitude": 5.3245259, "Latitude":46.0666003 },
46
+ { "ID": "02", "Longitude": 3.5960246, "Latitude": 49.5519632 },
47
+ { "ID": "03", "Longitude": 3.065278, "Latitude": 46.4002783 },
48
+ { "ID": "04", "Longitude": 6.2237688, "Latitude": 44.1105837 },
49
+ { "ID": "05", "Longitude": 6.2018836, "Latitude": 44.6630487 },
50
+ { "ID": "06", "Longitude": 7.0755745, "Latitude":43.9463082 },
51
+ { "ID": "07", "Longitude": 4.3497308, "Latitude": 44.7626044 },
52
+ { "ID": "08", "Longitude": 4.6234893, "Latitude": 49.6473884 },
53
+ { "ID": "09", "Longitude": 1.6037147, "Latitude": 42.9696091 },
54
+ { "ID": "10", "Longitude": 4.1394954, "Latitude": 48.2963286 },
55
+ { "ID": "11", "Longitude": 2.3140163, "Latitude": 43.1111427 },
56
+ { "ID": "12", "Longitude": 2.7365234, "Latitude": 44.2786323 },
57
+ { "ID": "13", "Longitude": 5.0515492, "Latitude": 43.5539098 },
58
+ { "ID": "14", "Longitude": -0.3930779, "Latitude": 49.1024215 },
59
+ { "ID": "15", "Longitude": 2.6367657, "Latitude": 44.9643217 },
60
+ { "ID": "16", "Longitude": 0.180475, "Latitude": 45.706264 },
61
+ { "ID": "17", "Longitude": -0.7082589, "Latitude": 45.7629699 },
62
+ { "ID": "18", "Longitude": 2.5292424, "Latitude": 47.0926687 },
63
+ { "ID": "19", "Longitude": 1.8841811, "Latitude": 45.3622055 },
64
+ { "ID": "2A", "Longitude": 8.9906834, "Latitude": 41.8619761 },
65
+ { "ID": "2B", "Longitude": 9.275489, "Latitude": 42.372014 },
66
+ { "ID": "21", "Longitude": 4.7870471, "Latitude": 47.4736746 },
67
+ { "ID": "22", "Longitude": -2.9227591, "Latitude": 48.408402 },
68
+ { "ID": "23", "Longitude": 2.0265508, "Latitude": 46.0837382 },
69
+ { "ID": "24", "Longitude": 0.7140145, "Latitude": 45.1489678 },
70
+ { "ID": "25", "Longitude": 6.3991355, "Latitude": 47.1879451 },
71
+ { "ID": "26", "Longitude": 5.1717552, "Latitude": 44.8055408 },
72
+ { "ID": "27", "Longitude": 0.9488116, "Latitude": 49.1460288 },
73
+ { "ID": "28", "Longitude": 1.2793491, "Latitude": 48.3330017 },
74
+ { "ID": "29", "Longitude": -4.1577074, "Latitude": 48.2869945 },
75
+ { "ID": "30", "Longitude": 4.2650329, "Latitude": 43.9636468 },
76
+ { "ID": "31", "Longitude": 1.2728958, "Latitude": 43.3671081 },
77
+ { "ID": "32", "Longitude": 0.4220039, "Latitude": 43.657141 },
78
+ { "ID": "33", "Longitude": -0.5760716, "Latitude": 44.8406068 },
79
+ { "ID": "34", "Longitude": 3.4197556, "Latitude": 43.62585 },
80
+ { "ID": "35", "Longitude": -1.6443812, "Latitude": 48.1801254 },
81
+ { "ID": "36", "Longitude": 1.6509938, "Latitude": 46.7964222 },
82
+ { "ID": "37", "Longitude": 0.7085619, "Latitude": 47.2802601 },
83
+ { "ID": "38", "Longitude": 5.6230772, "Latitude": 45.259805 },
84
+ { "ID": "39", "Longitude": 5.612871, "Latitude": 46.7398138 },
85
+ { "ID": "40", "Longitude": -0.8771738, "Latitude": 44.0161251 },
86
+ { "ID": "41", "Longitude": 1.3989178, "Latitude": 47.5866519 },
87
+ { "ID": "42", "Longitude": 4.2262355, "Latitude": 45.7451186 },
88
+ { "ID": "43", "Longitude": 3.8118151, "Latitude": 45.1473029 },
89
+ { "ID": "44", "Longitude": -1.7642949, "Latitude": 47.4616509 },
90
+ { "ID": "45", "Longitude": 2.2372695, "Latitude": 47.8631395 },
91
+ { "ID": "46", "Longitude": 1.5732157, "Latitude": 44.6529284 },
92
+ { "ID": "47", "Longitude": 0.4788052, "Latitude": 44.4027215 },
93
+ { "ID": "48", "Longitude": 3.4991239, "Latitude": 44.5191573 },
94
+ { "ID": "49", "Longitude": -0.5136056, "Latitude": 47.3945201 },
95
+ { "ID": "50", "Longitude": -1.3203134, "Latitude": 49.0162072 },
96
+ { "ID": "51", "Longitude": 4.2966555, "Latitude": 48.9479636 },
97
+ { "ID": "52", "Longitude": 5.1325796, "Latitude": 48.1077196 },
98
+ { "ID": "53", "Longitude": -0.7073921, "Latitude": 48.1225795 },
99
+ { "ID": "54", "Longitude": 6.144792, "Latitude": 48.7995163 },
100
+ { "ID": "55", "Longitude": 5.2888292, "Latitude": 49.0074545 },
101
+ { "ID": "56", "Longitude": -2.8746938, "Latitude": 47.9239486 },
102
+ { "ID": "57", "Longitude": 6.5610683, "Latitude": 49.0399233 },
103
+ { "ID": "58", "Longitude": 3.5544332, "Latitude": 47.1122301 },
104
+ { "ID": "59", "Longitude": 3.2466616, "Latitude": 50.4765414 },
105
+ { "ID": "60", "Longitude": 2.4161734, "Latitude": 49.3852913 },
106
+ { "ID": "61", "Longitude": 0.2248368, "Latitude": 48.5558919 },
107
+ { "ID": "62", "Longitude": 2.2555152, "Latitude": 50.4646795 },
108
+ { "ID": "63", "Longitude": 3.1322144, "Latitude": 45.7471805 },
109
+ { "ID": "64", "Longitude": -0.793633, "Latitude": 43.3390984 },
110
+ { "ID": "65", "Longitude": 0.1478724, "Latitude": 43.0526238 },
111
+ { "ID": "66", "Longitude": 2.5239855, "Latitude": 42.5825094 },
112
+ { "ID": "67", "Longitude": 7.5962225, "Latitude": 48.662515 },
113
+ { "ID": "68", "Longitude": 7.2656284, "Latitude": 47.8586205 },
114
+ { "ID": "69", "Longitude": 4.6859896, "Latitude": 45.8714754 },
115
+ { "ID": "70", "Longitude": 6.1388571, "Latitude": 47.5904191 },
116
+ { "ID": "71", "Longitude": 4.6394021, "Latitude": 46.5951234 },
117
+ { "ID": "72", "Longitude": 0.1947322, "Latitude": 48.0041421 },
118
+ { "ID": "73", "Longitude": 6.4662232, "Latitude": 45.4956055 },
119
+ { "ID": "74", "Longitude": 6.3609606, "Latitude": 46.1045902 },
120
+ { "ID": "75", "Longitude": 2.3416082, "Latitude": 48.8626759 },
121
+ { "ID": "76", "Longitude": 1.025579, "Latitude": 49.6862911 },
122
+ { "ID": "77", "Longitude": 2.8977309, "Latitude": 48.5957831 },
123
+ { "ID": "78", "Longitude": 1.8080138, "Latitude": 48.7831982 },
124
+ { "ID": "79", "Longitude": -0.3159014, "Latitude": 46.5490257 },
125
+ { "ID": "80", "Longitude": 2.3380595, "Latitude": 49.9783317 },
126
+ { "ID": "81", "Longitude": 2.2072751, "Latitude": 43.8524305 },
127
+ { "ID": "82", "Longitude": 1.2649374, "Latitude": 44.1254902 },
128
+ { "ID": "83", "Longitude": 6.1486127, "Latitude": 43.5007903 },
129
+ { "ID": "84", "Longitude": 5.065418, "Latitude": 44.0001599 },
130
+ { "ID": "85", "Longitude": -1.3956692, "Latitude": 46.5929102 },
131
+ { "ID": "86", "Longitude": 0.4953679, "Latitude": 46.5719095 },
132
+ { "ID": "87", "Longitude": 1.2500647, "Latitude": 45.9018644 },
133
+ { "ID": "88", "Longitude": 6.349702, "Latitude": 48.1770451 },
134
+ { "ID": "89", "Longitude": 3.5634078, "Latitude": 47.8474664 },
135
+ { "ID": "90", "Longitude": 6.9498114, "Latitude": 47.6184394 },
136
+ { "ID": "91", "Longitude": 2.2714555, "Latitude": 48.5203114 },
137
+ { "ID": "92", "Longitude": 2.2407148, "Latitude": 48.835321 },
138
+ { "ID": "93", "Longitude": 2.4811577, "Latitude": 48.9008719 },
139
+ { "ID": "94", "Longitude": 2.4549766, "Latitude": 48.7832368 },
140
+ { "ID": "95", "Longitude": 2.1802056, "Latitude": 49.076488 },
141
+ { "ID": "974", "Longitude": 55.536384, "Latitude": -21.115141 },
142
+ { "ID": "973", "Longitude": -53.125782, "Latitude": 3.933889 },
143
+ { "ID": "972", "Longitude": -61.024174, "Latitude": 14.641528 },
144
+ { "ID": "971", "Longitude": -61.551, "Latitude": 16.265 }
145
+ ]
146
+
147
+ return ListCentroids
148
+
149
+ def connexion_France_Travail():
150
+ client = Api(client_id=os.getenv('POLE_EMPLOI_CLIENT_ID'),
151
+ client_secret=os.getenv('POLE_EMPLOI_CLIENT_SECRET'))
152
+ return client
153
+
154
+ def API_France_Travail(romeListArray):
155
+ client = connexion_France_Travail()
156
+ todayDate = datetime.datetime.today()
157
+ month, year = (todayDate.month-1, todayDate.year) if todayDate.month != 1 else (12, todayDate.year-1)
158
+ start_dt = todayDate.replace(day=1, month=month, year=year)
159
+ end_dt = datetime.datetime.today()
160
+ results = []
161
+ for k in romeListArray:
162
+ if k[0:1] == ' ':
163
+ k = k[1:]
164
+ params = {"motsCles": k.replace('/', '').replace('-', '').replace(',', '').replace(' ', ','),'minCreationDate': dt_to_str_iso(start_dt),'maxCreationDate': dt_to_str_iso(end_dt),'range':'0-149'}
165
+ try:
166
+ search_on_big_data = client.search(params=params)
167
+ results += search_on_big_data["resultats"]
168
+ except:
169
+ print("Il n'y a pas d'offres d'emploi.")
170
+
171
+ results_df = pd.DataFrame(results)
172
+ return results_df
173
+
174
+ theme_toggle = dmc.Tooltip(
175
+ dmc.ActionIcon(
176
+ [
177
+ dmc.Paper(DashIconify(icon="radix-icons:sun", width=25), darkHidden=True),
178
+ dmc.Paper(DashIconify(icon="radix-icons:moon", width=25), lightHidden=True),
179
+ ],
180
+ variant="transparent",
181
+ color="yellow",
182
+ id="color-scheme-toggle",
183
+ size="lg",
184
+ ms="auto",
185
+ ),
186
+ label="Changez de thème",
187
+ position="left",
188
+ withArrow=True,
189
+ arrowSize=6,
190
+ )
191
+
192
+ styleTitle = {
193
+ "textAlign": "center",
194
+ "color": dmc.DEFAULT_THEME["colors"]["orange"][4]
195
+ }
196
+
197
+ styleToggle = {
198
+ "marginTop":"25px",
199
+ "textAlign": "right",
200
+ }
201
+ app = Dash(server=server, external_stylesheets=dmc.styles.ALL)
202
+
203
+ app.layout = dmc.MantineProvider(
204
+ [
205
+ html.Div(
206
+ children=[
207
+ dmc.Container(
208
+ children=[
209
+ dmc.Grid(
210
+ children=[
211
+ dmc.GridCol(html.Div(
212
+ dmc.MultiSelect(
213
+ label="Selectionnez vos Codes ROME",
214
+ placeholder="Select vos Codes ROME parmi la liste",
215
+ id="framework-multi-select",
216
+ value=['K2105', 'L1101', 'L1202', 'L1507', 'L1508', 'L1509'],
217
+ data=[
218
+ {"value": "K2105", "label": "K2105"},
219
+ {"value": "L1101", "label": "L1101"},
220
+ {"value": "L1202", "label": "L1202"},
221
+ {"value": "L1507", "label": "L1507"},
222
+ {"value": "L1508", "label": "L1508"},
223
+ {"value": "L1509", "label": "L1509"},
224
+ ],
225
+ w=600,
226
+ mb=10,
227
+ styles={
228
+ "input": {"borderColor": dmc.DEFAULT_THEME["colors"]["orange"][2]},
229
+ "label": {"color": dmc.DEFAULT_THEME["colors"]["orange"][4]},
230
+ },
231
+ )
232
+ ), span=6),
233
+ dmc.GridCol(html.Div(dmc.Title(f"Le marché et les statistiques de l'emploi", order=1, size="30", my="20", style=styleTitle)), span=5),
234
+ dmc.GridCol(html.Div(theme_toggle, style=styleToggle), span=1),
235
+ dmc.GridCol(html.Div(
236
+ dcc.Graph(id="figRepartition",selectedData={'points': [{'hovertext': ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15','16','17','18','19','2A','2B','21','22','23','24','25','26','27','28','29','30','31','32','33','34','35','36','37','38','39','40','41','42','43','44','45','46','47','48','49','50','51','52','53','54','55','56','57','58','59','60','61','62','63','64','65','66','67','68','69','70','71','72','73','74','75','76','77','78','79','80','81','82','83','84','85','86','87','88','89','90','91','92','93','94','95','971','972','973','974']}]}),
237
+ ), span=6),
238
+ dmc.GridCol(html.Div(
239
+ dcc.Graph(id="figEmplois"),
240
+ ), span=6),
241
+ dmc.GridCol(html.Div(
242
+ dcc.Graph(id="figContrats"),
243
+ ), span=6),
244
+ dmc.GridCol(html.Div(
245
+ dcc.Graph(id="figExperiences"),
246
+ ), span=6),
247
+ dmc.GridCol(html.Div(
248
+ dcc.Graph(id="figCompetences"),
249
+ ), span=6),
250
+ dmc.GridCol(html.Div(
251
+ dcc.Graph(id="figTransversales"),
252
+ ), span=6),
253
+ ],
254
+ gutter="xs",
255
+ )
256
+ ],size="xxl",fluid=True
257
+ ),
258
+ ]
259
+ )
260
+ ],
261
+ id="mantine-provider",
262
+ forceColorScheme="dark",
263
+ theme={
264
+ "primaryColor": "indigo",
265
+ "fontFamily": "'Inter', sans-serif",
266
+ "components": {
267
+ "Button": {"defaultProps": {"fw": 400}},
268
+ "Alert": {"styles": {"title": {"fontWeight": 500}}},
269
+ "AvatarGroup": {"styles": {"truncated": {"fontWeight": 500}}},
270
+ "Badge": {"styles": {"root": {"fontWeight": 500}}},
271
+ "Progress": {"styles": {"label": {"fontWeight": 500}}},
272
+ "RingProgress": {"styles": {"label": {"fontWeight": 500}}},
273
+ "CodeHighlightTabs": {"styles": {"file": {"padding": 12}}},
274
+ "Table": {
275
+ "defaultProps": {
276
+ "highlightOnHover": True,
277
+ "withTableBorder": True,
278
+ "verticalSpacing": "sm",
279
+ "horizontalSpacing": "md",
280
+ }
281
+ },
282
+ },
283
+ # add your colors
284
+ "colors": {
285
+ "deepBlue": ["#E9EDFC", "#C1CCF6", "#99ABF0"], # 10 color elements
286
+ },
287
+ "shadows": {
288
+ # other shadows (xs, sm, lg) will be merged from default theme
289
+ "md": "1px 1px 3px rgba(0,0,0,.25)",
290
+ "xl": "5px 5px 3px rgba(0,0,0,.25)",
291
+ },
292
+ "headings": {
293
+ "fontFamily": "Roboto, sans-serif",
294
+ "sizes": {
295
+ "h1": {"fontSize": 30},
296
+ },
297
+ },
298
+ },
299
+ )
300
+ @callback(
301
+ Output("mantine-provider", "forceColorScheme"),
302
+ Input("color-scheme-toggle", "n_clicks"),
303
+ State("mantine-provider", "forceColorScheme"),
304
+ prevent_initial_call=True,
305
+ )
306
+ def switch_theme(_, theme):
307
+ return "dark" if theme == "light" else "light"
308
+
309
+ @callback(
310
+ Output(component_id='figRepartition', component_property='figure'),
311
+ Output(component_id='figCompetences', component_property='figure'),
312
+ Output(component_id='figTransversales', component_property='figure'),
313
+ Input(component_id='framework-multi-select', component_property='value'),
314
+ Input("mantine-provider", "forceColorScheme"),
315
+ )
316
+ def create_repartition(array_value, theme):
317
+ if theme == "dark":
318
+ template = "plotly_dark"
319
+ paper_bgcolor = 'rgba(36, 36, 36, 1)'
320
+ plot_bgcolor = 'rgba(36, 36, 36, 1)'
321
+ else:
322
+ template = "ggplot2"
323
+ paper_bgcolor = 'rgba(255, 255, 255, 1)'
324
+ plot_bgcolor = 'rgba(255, 255, 255, 1)'
325
+
326
+ df_FT = API_France_Travail(array_value)
327
+ df = df_FT[['intitule','typeContratLibelle','experienceLibelle','lieuTravail']].copy()
328
+ df["lieuTravail"] = df["lieuTravail"].apply(lambda x: x['libelle']).apply(lambda x: x[0:3]).apply(lambda x: x.strip())
329
+ df.drop(df[df['lieuTravail'] == 'Fra'].index, inplace = True)
330
+ df.drop(df[df['lieuTravail'] == 'FRA'].index, inplace = True)
331
+ df.drop(df[df['lieuTravail'] == 'Ile'].index, inplace = True)
332
+ df.drop(df[df['lieuTravail'] == 'Mar'].index, inplace = True)
333
+ df.drop(df[df['lieuTravail'] == 'Bou'].index, inplace = True)
334
+ df.drop(df[df['lieuTravail'] == '976'].index, inplace = True)
335
+
336
+ ######## localisation ########
337
+ ListCentroids = localisation()
338
+ df_localisation = df.groupby('lieuTravail').size().reset_index(name='obs')
339
+ df_localisation = df_localisation.sort_values(by=['lieuTravail'])
340
+ df_localisation['longitude'] = df_localisation['lieuTravail']
341
+ df_localisation['latitude'] = df_localisation['lieuTravail']
342
+ df_localisation["longitude"] = df_localisation['longitude'].apply(lambda x:[loc['Longitude'] for loc in ListCentroids if loc['ID'] == x]).apply(lambda x:''.join(map(str, x)))
343
+ df_localisation["longitude"] = pd.to_numeric(df_localisation["longitude"], downcast="float")
344
+ df_localisation["latitude"] = df_localisation['latitude'].apply(lambda x:[loc['Latitude'] for loc in ListCentroids if loc['ID'] == x]).apply(lambda x:''.join(map(str, x)))
345
+ df_localisation["latitude"] = pd.to_numeric(df_localisation["latitude"], downcast="float")
346
+ res = requests.get(
347
+ "https://raw.githubusercontent.com/codeforgermany/click_that_hood/main/public/data/france-regions.geojson"
348
+ )
349
+ fig_localisation = px.scatter_mapbox(df_localisation, lat="latitude", lon="longitude", height=600, template=template, title="La répartition géographique des emplois", hover_name="lieuTravail", size="obs").update_layout(
350
+ mapbox={
351
+ "style": "carto-positron",
352
+ "center": {"lon": 2, "lat" : 47},
353
+ "zoom": 4.5,
354
+ "layers": [
355
+ {
356
+ "source": res.json(),
357
+ "type": "line",
358
+ "color": "green",
359
+ "line": {"width": 0},
360
+ }
361
+ ],
362
+ },font=dict(size=10),paper_bgcolor=paper_bgcolor,autosize=True,clickmode='event+select'
363
+ )
364
+
365
+ df_FT.dropna(subset=['qualitesProfessionnelles','formations','competences'], inplace=True)
366
+ df_FT["competences"] = df_FT["competences"].apply(lambda x:[str(e['libelle']) for e in x]).apply(lambda x:'; '.join(map(str, x)))
367
+ df_FT["qualitesProfessionnelles"] = df_FT["qualitesProfessionnelles"].apply(lambda x:[str(e['libelle']) + ": " + str(e['description']) for e in x]).apply(lambda x:'; '.join(map(str, x)))
368
+
369
+ ######## Compétences professionnelles ########
370
+ df_comp = df_FT
371
+ df_comp['competences'] = df_FT['competences'].str.split(';')
372
+ df_comp = df_comp.explode('competences')
373
+ df_comp = df_comp.groupby('competences').size().reset_index(name='obs')
374
+ df_comp = df_comp.sort_values(by=['obs'])
375
+ df_comp = df_comp.iloc[-20:]
376
+ fig_competences = px.bar(df_comp, x='obs', y='competences', orientation='h', color='obs', height=600, template=template, title="Les principales compétences professionnelles", labels={'obs':'nombre'}, color_continuous_scale="Teal", text_auto=True).update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor,plot_bgcolor=plot_bgcolor,autosize=True).update_traces(hovertemplate=df_comp["competences"] + ' <br>Nombre : %{x}', y=[y[:100] + "..." for y in df_comp['competences']], showlegend=False)
377
+
378
+ ######## Compétences transversales ########
379
+ df_transversales = df_FT
380
+ df_transversales['qualitesProfessionnelles'] = df_FT['qualitesProfessionnelles'].str.split(';')
381
+ df_comptransversales = df_transversales.explode('qualitesProfessionnelles')
382
+ df_comptransversales = df_comptransversales.groupby('qualitesProfessionnelles').size().reset_index(name='obs')
383
+ df_comptransversales = df_comptransversales.sort_values(by=['obs'])
384
+ df_comptransversales = df_comptransversales.iloc[-20:]
385
+ fig_transversales = px.bar(df_comptransversales, x='obs', y='qualitesProfessionnelles', orientation='h', color='obs', height=600, template=template, title="Les principales compétences transversales", labels={'obs':'nombre'}, color_continuous_scale="Teal", text_auto=True).update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor,plot_bgcolor=plot_bgcolor,autosize=True).update_traces(hovertemplate=df_comptransversales["qualitesProfessionnelles"] + ' <br>Nombre : %{x}', y=[y[:80] + "..." for y in df_comptransversales["qualitesProfessionnelles"]], showlegend=False)
386
+
387
+ return fig_localisation, fig_competences, fig_transversales
388
+
389
+ def create_emploi(df, theme):
390
+ if theme == "dark":
391
+ template = "plotly_dark"
392
+ paper_bgcolor = 'rgba(36, 36, 36, 1)'
393
+ plot_bgcolor = 'rgba(36, 36, 36, 1)'
394
+ else:
395
+ template = "ggplot2"
396
+ paper_bgcolor = 'rgba(255, 255, 255, 1)'
397
+ plot_bgcolor = 'rgba(255, 255, 255, 1)'
398
+ ######## Emplois ########
399
+ df_intitule = df.groupby('intitule').size().reset_index(name='obs')
400
+ df_intitule = df_intitule.sort_values(by=['obs'])
401
+ df_intitule = df_intitule.iloc[-25:]
402
+ fig_intitule = px.bar(df_intitule, x='obs', y='intitule', height=600, orientation='h', color='obs', template=template, title="Les principaux emplois", labels={'obs':'nombre'}, color_continuous_scale="Teal", text_auto=True).update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor,plot_bgcolor=plot_bgcolor, autosize=True).update_traces(hovertemplate=df_intitule["intitule"] + ' <br>Nombre : %{x}', y=[y[:100] + "..." for y in df_intitule["intitule"]], showlegend=False)
403
+
404
+ return fig_intitule
405
+
406
+ def create_contrat(df, theme):
407
+ if theme == "dark":
408
+ template = "plotly_dark"
409
+ paper_bgcolor = 'rgba(36, 36, 36, 1)'
410
+ else:
411
+ template = "ggplot2"
412
+ paper_bgcolor = 'rgba(255, 255, 255, 1)'
413
+
414
+ ######## Types de contrat ########
415
+ df_contrat = df.groupby('typeContratLibelle').size().reset_index(name='obs')
416
+ fig_contrat = px.pie(df_contrat, names='typeContratLibelle', values='obs', color='obs', height=600, template=template, title="Les types de contrat", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe).update_traces(textposition='inside', textinfo='percent+label').update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor)
417
+
418
+ return fig_contrat
419
+
420
+ def create_experience(df, theme):
421
+ if theme == "dark":
422
+ template = "plotly_dark"
423
+ paper_bgcolor = 'rgba(36, 36, 36, 1)'
424
+ else:
425
+ template = "ggplot2"
426
+ paper_bgcolor = 'rgba(255, 255, 255, 1)'
427
+ ######## Expériences professionnelles ########
428
+ df_experience = df.groupby('experienceLibelle').size().reset_index(name='obs')
429
+ fig_experience = px.pie(df_experience, names='experienceLibelle', values='obs', color='obs', height=600, template=template, title="Les expériences professionnelles", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe).update_traces(textposition='inside', textinfo='percent+label').update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor)
430
+
431
+ return fig_experience
432
+
433
+ @callback(
434
+ Output(component_id='figEmplois', component_property='figure'),
435
+ Input('figRepartition', 'selectedData'),
436
+ Input(component_id='framework-multi-select', component_property='value'),
437
+ Input("mantine-provider", "forceColorScheme"),
438
+ )
439
+
440
+ def update_emploi(selectedData, array_value, theme):
441
+ options = []
442
+ if selectedData != None:
443
+ if type(selectedData['points'][0]['hovertext']) == str:
444
+ options.append(selectedData['points'][0]['hovertext'])
445
+ else:
446
+ options = selectedData['points'][0]['hovertext']
447
+ else:
448
+ options = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15','16','17','18','19','2A','2B','21','22','23','24','25','26','27','28','29','30','31','32','33','34','35','36','37','38','39','40','41','42','43','44','45','46','47','48','49','50','51','52','53','54','55','56','57','58','59','60','61','62','63','64','65','66','67','68','69','70','71','72','73','74','75','76','77','78','79','80','81','82','83','84','85','86','87','88','89','90','91','92','93','94','95','971','972','973','974']
449
+
450
+ df_FT = API_France_Travail(array_value)
451
+ df = df_FT[['intitule','typeContratLibelle','experienceLibelle','lieuTravail']].copy()
452
+ df["lieuTravail"] = df["lieuTravail"].apply(lambda x: x['libelle']).apply(lambda x: x[0:3]).apply(lambda x: x.strip())
453
+ df.drop(df[df['lieuTravail'] == 'Fra'].index, inplace = True)
454
+ df.drop(df[df['lieuTravail'] == 'FRA'].index, inplace = True)
455
+ df.drop(df[df['lieuTravail'] == 'Ile'].index, inplace = True)
456
+ df.drop(df[df['lieuTravail'] == 'Mar'].index, inplace = True)
457
+ df.drop(df[df['lieuTravail'] == 'Bou'].index, inplace = True)
458
+ df.drop(df[df['lieuTravail'] == '976'].index, inplace = True)
459
+ df = df[df['lieuTravail'].isin(options)]
460
+ return create_emploi(df, theme)
461
+
462
+ @callback(
463
+ Output(component_id='figContrats', component_property='figure'),
464
+ Input('figRepartition', 'selectedData'),
465
+ Input(component_id='framework-multi-select', component_property='value'),
466
+ Input("mantine-provider", "forceColorScheme"),
467
+ )
468
+
469
+ def update_contrat(selectedData, array_value, theme):
470
+ options = []
471
+ if selectedData != None:
472
+ if type(selectedData['points'][0]['hovertext']) == str:
473
+ options.append(selectedData['points'][0]['hovertext'])
474
+ else:
475
+ options = selectedData['points'][0]['hovertext']
476
+ else:
477
+ options = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15','16','17','18','19','2A','2B','21','22','23','24','25','26','27','28','29','30','31','32','33','34','35','36','37','38','39','40','41','42','43','44','45','46','47','48','49','50','51','52','53','54','55','56','57','58','59','60','61','62','63','64','65','66','67','68','69','70','71','72','73','74','75','76','77','78','79','80','81','82','83','84','85','86','87','88','89','90','91','92','93','94','95','971','972','973','974']
478
+
479
+ df_FT = API_France_Travail(array_value)
480
+ df = df_FT[['intitule','typeContratLibelle','experienceLibelle','lieuTravail']].copy()
481
+ df["lieuTravail"] = df["lieuTravail"].apply(lambda x: x['libelle']).apply(lambda x: x[0:3]).apply(lambda x: x.strip())
482
+ df.drop(df[df['lieuTravail'] == 'Fra'].index, inplace = True)
483
+ df.drop(df[df['lieuTravail'] == 'FRA'].index, inplace = True)
484
+ df.drop(df[df['lieuTravail'] == 'Ile'].index, inplace = True)
485
+ df.drop(df[df['lieuTravail'] == 'Mar'].index, inplace = True)
486
+ df.drop(df[df['lieuTravail'] == 'Bou'].index, inplace = True)
487
+ df.drop(df[df['lieuTravail'] == '976'].index, inplace = True)
488
+ df = df[df['lieuTravail'].isin(options)]
489
+
490
+ return create_contrat(df, theme)
491
+
492
+ @callback(
493
+ Output(component_id='figExperiences', component_property='figure'),
494
+ Input('figRepartition', 'selectedData'),
495
+ Input(component_id='framework-multi-select', component_property='value'),
496
+ Input("mantine-provider", "forceColorScheme"),
497
+ )
498
+
499
+ def update_experience(selectedData, array_value, theme):
500
+ options = []
501
+ if selectedData != None:
502
+ if type(selectedData['points'][0]['hovertext']) == str:
503
+ options.append(selectedData['points'][0]['hovertext'])
504
+ else:
505
+ options = selectedData['points'][0]['hovertext']
506
+ else:
507
+ options = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15','16','17','18','19','2A','2B','21','22','23','24','25','26','27','28','29','30','31','32','33','34','35','36','37','38','39','40','41','42','43','44','45','46','47','48','49','50','51','52','53','54','55','56','57','58','59','60','61','62','63','64','65','66','67','68','69','70','71','72','73','74','75','76','77','78','79','80','81','82','83','84','85','86','87','88','89','90','91','92','93','94','95','971','972','973','974']
508
+
509
+ df_FT = API_France_Travail(array_value)
510
+ df = df_FT[['intitule','typeContratLibelle','experienceLibelle','lieuTravail']].copy()
511
+ df["lieuTravail"] = df["lieuTravail"].apply(lambda x: x['libelle']).apply(lambda x: x[0:3]).apply(lambda x: x.strip())
512
+ df.drop(df[df['lieuTravail'] == 'Fra'].index, inplace = True)
513
+ df.drop(df[df['lieuTravail'] == 'FRA'].index, inplace = True)
514
+ df.drop(df[df['lieuTravail'] == 'Ile'].index, inplace = True)
515
+ df.drop(df[df['lieuTravail'] == 'Mar'].index, inplace = True)
516
+ df.drop(df[df['lieuTravail'] == 'Bou'].index, inplace = True)
517
+ df.drop(df[df['lieuTravail'] == '976'].index, inplace = True)
518
+ df = df[df['lieuTravail'].isin(options)]
519
+
520
+ return create_experience(df, theme)
521
+
522
+ if __name__ == '__main__':
523
+ app.run_server(debug=True)