File size: 2,237 Bytes
6c8e68a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbb8c9c
6c8e68a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
import pandas as pd

from langchain_openai import ChatOpenAI

from langchain.agents import AgentExecutor
from langchain.agents.agent_types import AgentType
from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent, create_csv_agent

import chainlit as cl

from deep_translator import GoogleTranslator

def create_agent(filename: str):
    """
    Create an agent that can access and use a large language model (LLM).

    Args:
        filename: The path to the CSV file that contains the data.

    Returns:
        An agent that can access and use the LLM.
    """

    # Create an OpenAI object.
    os.environ['OPENAI_API_KEY'] = os.environ['OPENAI_API_KEY']
    llm = ChatOpenAI(temperature=0, model="gpt-4o-2024-05-13")

    # Read the CSV file into a Pandas DataFrame.
    df = pd.read_csv(filename)

    # Create a Pandas DataFrame agent.
    return create_csv_agent(llm, filename, verbose=False, allow_dangerous_code=True, handle_parsing_errors=True, agent_type=AgentType.OPENAI_FUNCTIONS)


async def LLMAnswer(message):
    agent = create_agent("./public/surveyia.csv")
    cb = cl.AsyncLangchainCallbackHandler()
    try:
        res = await agent.acall("Réponds en langue française à la question suivante : " + message.content, callbacks=[cb])
        await cl.Message(author="COPILOT",content=GoogleTranslator(source='auto', target='fr').translate(res['output'])).send()
    except ValueError as e:
        res = str(e)
        resArray = res.split(":")
        ans = ''
        if str(res).find('parsing') != -1:
            for i in range(2,len(resArray)):
                ans += resArray[i]
            await cl.Message(author="COPILOT",content=ans.replace("`","")).send()
        else:
            await cl.Message(author="COPILOT",content="Reformulez votre requête, s'il vous plait 😃").send()
    # Query the agent.
    #response = query_agent(agent=agent, query=message.content)
    # Decode the response.
    #decoded_response = decode_response(response)

    # Write the response to the Streamlit app.
    #result = write_response(decoded_response)   
    #await cl.Message(author="COPILOT",content=GoogleTranslator(source='auto', target='fr').translate(result)).send()