|
import os |
|
import json |
|
import bcrypt |
|
import pandas as pd |
|
import numpy as np |
|
from typing import List |
|
from pathlib import Path |
|
from langchain_openai import ChatOpenAI, OpenAI |
|
from langchain.schema.runnable.config import RunnableConfig |
|
from langchain.schema import StrOutputParser |
|
from langchain_core.prompts import ChatPromptTemplate |
|
|
|
from langchain.agents import AgentExecutor |
|
from langchain.agents.agent_types import AgentType |
|
from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent, create_csv_agent |
|
|
|
import chainlit as cl |
|
from chainlit.input_widget import TextInput, Select, Switch, Slider |
|
|
|
from deep_translator import GoogleTranslator |
|
|
|
@cl.password_auth_callback |
|
def auth_callback(username: str, password: str): |
|
auth = json.loads(os.environ['CHAINLIT_AUTH_LOGIN']) |
|
ident = next(d['ident'] for d in auth if d['ident'] == username) |
|
pwd = next(d['pwd'] for d in auth if d['ident'] == username) |
|
resultLogAdmin = bcrypt.checkpw(username.encode('utf-8'), bcrypt.hashpw(ident.encode('utf-8'), bcrypt.gensalt())) |
|
resultPwdAdmin = bcrypt.checkpw(password.encode('utf-8'), bcrypt.hashpw(pwd.encode('utf-8'), bcrypt.gensalt())) |
|
resultRole = next(d['role'] for d in auth if d['ident'] == username) |
|
if resultLogAdmin and resultPwdAdmin and resultRole == "admindatapcc": |
|
return cl.User( |
|
identifier=ident + " : 🧑💼 Admin Datapcc", metadata={"role": "admin", "provider": "credentials"} |
|
) |
|
elif resultLogAdmin and resultPwdAdmin and resultRole == "userdatapcc": |
|
return cl.User( |
|
identifier=ident + " : 🧑🎓 User Datapcc", metadata={"role": "user", "provider": "credentials"} |
|
) |
|
|
|
def create_agent(filename: str): |
|
""" |
|
Create an agent that can access and use a large language model (LLM). |
|
|
|
Args: |
|
filename: The path to the CSV file that contains the data. |
|
|
|
Returns: |
|
An agent that can access and use the LLM. |
|
""" |
|
|
|
|
|
os.environ['OPENAI_API_KEY'] = os.environ['OPENAI_API_KEY'] |
|
llm = OpenAI(temperature=0, model="gpt-4o-2024-05-13") |
|
|
|
|
|
df = pd.read_csv(filename) |
|
|
|
|
|
return create_pandas_dataframe_agent(llm, df, verbose=False, allow_dangerous_code=True, handle_parsing_errors=True) |
|
|
|
def query_agent(agent, query): |
|
""" |
|
Query an agent and return the response as a string. |
|
|
|
Args: |
|
agent: The agent to query. |
|
query: The query to ask the agent. |
|
|
|
Returns: |
|
The response from the agent as a string. |
|
""" |
|
|
|
prompt = ( |
|
""" |
|
For the following query, if it requires drawing a table, reply as follows: |
|
{"table": {"columns": ["column1", "column2", ...], "data": [[value1, value2, ...], [value1, value2, ...], ...]}} |
|
|
|
If the query requires creating a bar chart, reply as follows: |
|
{"bar": {"columns": ["A", "B", "C", ...], "data": [25, 24, 10, ...]}} |
|
|
|
If the query requires creating a line chart, reply as follows: |
|
{"line": {"columns": ["A", "B", "C", ...], "data": [25, 24, 10, ...]}} |
|
|
|
There can only be two types of chart, "bar" and "line". |
|
|
|
If it is just asking a question that requires neither, reply as follows: |
|
{"answer": "answer"} |
|
Example: |
|
{"answer": "The title with the highest rating is 'Gilead'"} |
|
|
|
If you do not know the answer, reply as follows: |
|
{"answer": "I do not know."} |
|
|
|
Return all output as a string. |
|
|
|
All strings in "columns" list and data list, should be in double quotes, |
|
|
|
For example: {"columns": ["title", "ratings_count"], "data": [["Gilead", 361], ["Spider's Web", 5164]]} |
|
|
|
Lets think step by step. |
|
|
|
Below is the query. |
|
Query: |
|
""" |
|
+ query |
|
) |
|
|
|
|
|
response = agent.invoke(prompt) |
|
|
|
|
|
return response.__str__() |
|
|
|
def decode_response(response: str) -> dict: |
|
"""This function converts the string response from the model to a dictionary object. |
|
|
|
Args: |
|
response (str): response from the model |
|
|
|
Returns: |
|
dict: dictionary with response data |
|
""" |
|
return json.loads("[" + response + "]") |
|
|
|
def write_response(response_dict: dict): |
|
""" |
|
Write a response from an agent to a Streamlit app. |
|
|
|
Args: |
|
response_dict: The response from the agent. |
|
|
|
Returns: |
|
None. |
|
""" |
|
|
|
|
|
return response_dict["answer"] |
|
|
|
@cl.set_chat_profiles |
|
async def chat_profile(): |
|
return [ |
|
cl.ChatProfile(name="Traitement des données d'enquête : «Expé CFA : questionnaire auprès des professionnels de la branche de l'agencement»",markdown_description="Vidéo exploratoire autour de l'événement",icon="/public/logo-ofipe.png",), |
|
] |
|
|
|
@cl.set_starters |
|
async def set_starters(): |
|
return [ |
|
cl.Starter( |
|
label="Répartition du nombre de CAA dans les entreprises", |
|
message="Quel est le nombre de chargé.e d'affaires en agencement dans chaque type d'entreprises?", |
|
icon="/public/request-theme.svg", |
|
) |
|
] |
|
|
|
@cl.on_message |
|
async def on_message(message: cl.Message): |
|
await cl.Message(f"> SURVEYIA").send() |
|
agent = create_agent("./public/ExpeCFA_LP_CAA_7-5-2024.csv") |
|
|
|
|
|
response = query_agent(agent=agent, query=message.content) |
|
|
|
decoded_response = decode_response(response) |
|
|
|
|
|
result = write_response(decoded_response) |
|
await cl.Message(author="COPILOT",content=GoogleTranslator(source='auto', target='fr').translate(result)).send() |