Update main.py
Browse files
main.py
CHANGED
@@ -6,8 +6,6 @@ import numpy as np
|
|
6 |
from typing import List
|
7 |
from pathlib import Path
|
8 |
|
9 |
-
from langchain_huggingface import HuggingFaceEndpoint
|
10 |
-
|
11 |
from langchain_openai import ChatOpenAI, OpenAI
|
12 |
from langchain.schema.runnable.config import RunnableConfig
|
13 |
from langchain.schema import StrOutputParser
|
@@ -61,16 +59,9 @@ def create_agent(filename: str):
|
|
61 |
"""
|
62 |
|
63 |
# Create an OpenAI object.
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
# Create an HuggingFace Mistral object.
|
68 |
-
os.environ['HUGGINGFACEHUB_API_TOKEN'] = os.environ['HUGGINGFACEHUB_API_TOKEN']
|
69 |
|
70 |
-
repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
71 |
-
llm = HuggingFaceEndpoint(
|
72 |
-
repo_id=repo_id, task="text2text-generation", max_new_tokens=8000, temperature=0.01, streaming=True
|
73 |
-
)
|
74 |
# Read the CSV file into a Pandas DataFrame.
|
75 |
if cl.user_session.get("createdb") == None:
|
76 |
df = pd.read_csv(filename)
|
@@ -83,7 +74,7 @@ def create_agent(filename: str):
|
|
83 |
db = cl.user_session.get("db")
|
84 |
# Create a SAL agent.
|
85 |
#e.g agent_executor.invoke({"input": "Quel est le nombre de chargé d'affaires en agencement par entreprise?"})
|
86 |
-
return create_sql_agent(llm, db=db, agent_type="
|
87 |
|
88 |
def query_agent(agent, query):
|
89 |
"""
|
|
|
6 |
from typing import List
|
7 |
from pathlib import Path
|
8 |
|
|
|
|
|
9 |
from langchain_openai import ChatOpenAI, OpenAI
|
10 |
from langchain.schema.runnable.config import RunnableConfig
|
11 |
from langchain.schema import StrOutputParser
|
|
|
59 |
"""
|
60 |
|
61 |
# Create an OpenAI object.
|
62 |
+
os.environ['OPENAI_API_KEY'] = os.environ['OPENAI_API_KEY']
|
63 |
+
llm = ChatOpenAI(temperature=0, model="gpt-4o-2024-05-13")
|
|
|
|
|
|
|
64 |
|
|
|
|
|
|
|
|
|
65 |
# Read the CSV file into a Pandas DataFrame.
|
66 |
if cl.user_session.get("createdb") == None:
|
67 |
df = pd.read_csv(filename)
|
|
|
74 |
db = cl.user_session.get("db")
|
75 |
# Create a SAL agent.
|
76 |
#e.g agent_executor.invoke({"input": "Quel est le nombre de chargé d'affaires en agencement par entreprise?"})
|
77 |
+
return create_sql_agent(llm, db=db, agent_type="openai-tools", verbose=False)
|
78 |
|
79 |
def query_agent(agent, query):
|
80 |
"""
|