datacipen commited on
Commit
f1bb8f7
·
verified ·
1 Parent(s): 2c18e26

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +14 -0
main.py CHANGED
@@ -268,7 +268,21 @@ async def on_chat_start():
268
  fig_competences_gestion_nb_charge = px.bar(df_competences_gestion_nb_charge, x='obs', y='principales_compétences_gestion_attendues', orientation='h', color='nombre_chargés_affaires', title="Les compétences en gestion attendues par nombre chargé.e d'affaires", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe, text_auto=True).update_layout(font=dict(size=9,color="RebeccaPurple"))
269
  elements.append(cl.Plotly(name="chart_competences_gestion_nb_charge", figure=fig_competences_gestion_nb_charge, display="inline", size="small"))
270
 
 
 
 
 
 
 
 
271
 
 
 
 
 
 
 
 
272
 
273
  content_all = "Tableaux des données de La \"taille des entreprises ayant répondu\"\n" + df_taille.to_string() + "\n\nTableaux des données de \"L’engagement dans le domaine de l’agencement\"\n" + df_temps.to_string() + "\n\nTableaux des données de \"L’engagement dans le domaine de l’agencement\" par taille d'entreprise\n" + df_temps_entreprise.to_string() + "\n\nTableaux des données de \"Le nombre de chargé.e d’affaires en agencement\"\n" + df_nb_charge.to_string() + "\n\nTableaux des données de \"Le nombre de chargé.e d’affaires en agencement par taille d'entreprise\"\n" + df_nb_charge_entreprise.to_string() + "\n\nTableaux des données de \"Le nombre de chargé.e d’affaires en agencement par année d'engagement\"\n" + df_nb_charge_engagement.to_string() + "\n\nTableaux des données de \"Le profil des répondants\"\n" + df_statut.to_string() + "\n\nTableaux des données de \"Les principaux interlocuteurs du CAA\"\n" + df_interlocuteur.to_string() + "\n\nTableaux des données de \"Les principaux interlocuteurs du CAA\" par taille d'entreprise\n" + df_interlocuteur_entreprise.to_string() + "\n\nTableaux des données de \"Les principaux interlocuteurs du CAA\" par nombre chargé.e d'affaires\n" + df_interlocuteur_nb_charge.to_string() + "\n\nTableaux des données de \"Les principales compétences attendues\"\n" + df_competences.to_string() + "\n\nTableaux des données de \"Les principales compétences attendues\" par taille d'entreprise\n" + df_competences_entreprise.to_string() + "\n\nTableaux des données de \"Les principales compétences attendues\" par nombre chargé.e d'affaires\n" + df_competences_nb_charge.to_string()
274
  tableau_all = [cl.Text(name="Tableaux", content=content_all, display="side")]
 
268
  fig_competences_gestion_nb_charge = px.bar(df_competences_gestion_nb_charge, x='obs', y='principales_compétences_gestion_attendues', orientation='h', color='nombre_chargés_affaires', title="Les compétences en gestion attendues par nombre chargé.e d'affaires", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe, text_auto=True).update_layout(font=dict(size=9,color="RebeccaPurple"))
269
  elements.append(cl.Plotly(name="chart_competences_gestion_nb_charge", figure=fig_competences_gestion_nb_charge, display="inline", size="small"))
270
 
271
+ df_difficulte = df.groupby('difficultés_recrutement_chargé').size().reset_index(name='obs')
272
+ fig_difficulte = px.pie(df_difficulte, names='difficultés_recrutement_chargé', values='obs', color='obs', title="Difficulté de recruter un CAA", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe).update_traces(textposition='inside', textinfo='percent+label').update_layout(font=dict(size=9,color="RebeccaPurple"))
273
+ elements.append(cl.Plotly(name="chart_difficulte", figure=fig_difficulte, display="inline", size="small"))
274
+
275
+ df_formation = df.groupby('organisation_formation').size().reset_index(name='obs')
276
+ fig_formation = px.pie(df_formation, names='organisation_formation', values='obs', color='obs', title="Formations organisées pour les CAA", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe).update_traces(textposition='inside', textinfo='percent+label').update_layout(font=dict(size=9,color="RebeccaPurple"))
277
+ elements.append(cl.Plotly(name="chart_formation", figure=fig_formation, display="inline", size="small"))
278
 
279
+ df_formation_entreprise = df.groupby(['organisation_formation', 'taille_entreprise']).size().reset_index(name='obs')
280
+ fig_formation_entreprise = px.pie(df_formation_entreprise, names='organisation_formation', values='obs', color='taille_entreprise', title="Formations organisées pour les CAA par taille d'entreprise", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe).update_traces(textposition='inside', textinfo='percent+label').update_layout(font=dict(size=9,color="RebeccaPurple"))
281
+ elements.append(cl.Plotly(name="chart_formation_entreprise", figure=fig_formation_entreprise, display="inline", size="small"))
282
+
283
+ df_formation_nb_charge = df.groupby(['organisation_formation', 'nombre_chargés_affaires']).size().reset_index(name='obs')
284
+ fig_formation_nb_charge = px.pie(df_formation_nb_charge, names='organisation_formation', values='obs', color='nombre_chargés_affaires', title="Formations organisées pour les CAA par nombre de chargé.e d'affaires", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe).update_traces(textposition='inside', textinfo='percent+label').update_layout(font=dict(size=9,color="RebeccaPurple"))
285
+ elements.append(cl.Plotly(name="chart_formation_nb_charge", figure=fig_formation_nb_charge, display="inline", size="small"))
286
 
287
  content_all = "Tableaux des données de La \"taille des entreprises ayant répondu\"\n" + df_taille.to_string() + "\n\nTableaux des données de \"L’engagement dans le domaine de l’agencement\"\n" + df_temps.to_string() + "\n\nTableaux des données de \"L’engagement dans le domaine de l’agencement\" par taille d'entreprise\n" + df_temps_entreprise.to_string() + "\n\nTableaux des données de \"Le nombre de chargé.e d’affaires en agencement\"\n" + df_nb_charge.to_string() + "\n\nTableaux des données de \"Le nombre de chargé.e d’affaires en agencement par taille d'entreprise\"\n" + df_nb_charge_entreprise.to_string() + "\n\nTableaux des données de \"Le nombre de chargé.e d’affaires en agencement par année d'engagement\"\n" + df_nb_charge_engagement.to_string() + "\n\nTableaux des données de \"Le profil des répondants\"\n" + df_statut.to_string() + "\n\nTableaux des données de \"Les principaux interlocuteurs du CAA\"\n" + df_interlocuteur.to_string() + "\n\nTableaux des données de \"Les principaux interlocuteurs du CAA\" par taille d'entreprise\n" + df_interlocuteur_entreprise.to_string() + "\n\nTableaux des données de \"Les principaux interlocuteurs du CAA\" par nombre chargé.e d'affaires\n" + df_interlocuteur_nb_charge.to_string() + "\n\nTableaux des données de \"Les principales compétences attendues\"\n" + df_competences.to_string() + "\n\nTableaux des données de \"Les principales compétences attendues\" par taille d'entreprise\n" + df_competences_entreprise.to_string() + "\n\nTableaux des données de \"Les principales compétences attendues\" par nombre chargé.e d'affaires\n" + df_competences_nb_charge.to_string()
288
  tableau_all = [cl.Text(name="Tableaux", content=content_all, display="side")]