File size: 7,052 Bytes
273a5e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from fastapi import FastAPI, UploadFile, File, HTTPException
from pydantic import BaseModel
from typing import List
import uvicorn
from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader, PDFLoader
from aimakerspace.openai_utils.prompts import (
    UserRolePrompt,
    SystemRolePrompt,
)
from aimakerspace.vectordatabase import VectorDatabase
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
import os
import tempfile
import shutil
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
import json

app = FastAPI(title="RAG API", description="REST API for RAG-based Q&A system")

# Move CORS middleware setup to the top, before any routes
app.add_middleware(
    CORSMiddleware,
    allow_origins=["http://localhost:3000"],  # React app's address
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Keep the same prompt templates
system_template = """\
Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer."""
system_role_prompt = SystemRolePrompt(system_template)

user_prompt_template = """\
Context:
{context}

Question:
{question}
"""
user_role_prompt = UserRolePrompt(user_prompt_template)

# Pydantic models for request/response
class Question(BaseModel):
    query: str

class Answer(BaseModel):
    response: str
    context: List[str]

    class Config:
        json_schema_extra = {
            "example": {
                "response": "This is a sample response",
                "context": ["Context piece 1", "Context piece 2"]
            }
        }

# Add this class near the top of the file, after imports
class AppState:
    def __init__(self):
        self.text_splitter = CharacterTextSplitter()
        self.vector_db = None
        self.qa_pipeline = None

    def has_pipeline(self):
        return self.qa_pipeline is not None

# Create a global app state
app_state = AppState()

class RetrievalAugmentedQAPipeline:
    def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
        self.llm = llm
        self.vector_db_retriever = vector_db_retriever

    async def arun_pipeline(self, user_query: str):
        context_list = self.vector_db_retriever.search_by_text(user_query, k=4)

        context_prompt = ""
        for context in context_list:
            context_prompt += context[0] + "\n"

        formatted_system_prompt = system_role_prompt.create_message()
        formatted_user_prompt = user_role_prompt.create_message(
            question=user_query, context=context_prompt
        )

        # Get the full response instead of streaming
        response = ""
        async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
            response += chunk

        return {
            "response": response,
            "context": [str(context[0]) for context in context_list]  # Convert context to strings
        }

def process_file(file_path: str, file_name: str):
    if file_name.lower().endswith('.pdf'):
        loader = PDFLoader(file_path)
    else:
        loader = TextFileLoader(file_path)
        
    documents = loader.load_documents()
    texts = app_state.text_splitter.split_texts(documents)
    return texts

@app.post("/upload")
async def upload_file(file: UploadFile = File(...)):
    print("Starting file upload process...")  # Debug print
    
    if not file:
        print("No file provided")  # Debug print
        raise HTTPException(400, detail="No file provided")
    
    print(f"File received: {file.filename}")  # Debug print
    
    if not file.filename.lower().endswith(('.txt', '.pdf')):
        print(f"Invalid file type: {file.filename}")  # Debug print
        raise HTTPException(400, detail="Only .txt and .pdf files are supported")
    
    try:
        suffix = f".{file.filename.split('.')[-1]}"
        with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as temp_file:
            print(f"Created temp file: {temp_file.name}")  # Debug print
            content = await file.read()
            temp_file.write(content)
            temp_file.flush()
            
            try:
                print("Processing file...")  # Debug print
                texts = process_file(temp_file.name, file.filename)
                print(f"Got {len(texts)} text chunks")  # Debug print
                
                # Initialize vector database
                print("Initializing vector database...")  # Debug print
                app_state.vector_db = VectorDatabase()
                app_state.vector_db = await app_state.vector_db.abuild_from_list(texts)
                
                # Initialize QA pipeline
                print("Initializing QA pipeline...")  # Debug print
                chat_openai = ChatOpenAI()
                app_state.qa_pipeline = RetrievalAugmentedQAPipeline(
                    vector_db_retriever=app_state.vector_db,
                    llm=chat_openai
                )
                print("QA pipeline initialized successfully")  # Debug print
                
                return {"message": f"Successfully processed {file.filename}", "chunks": len(texts)}
            finally:
                try:
                    os.unlink(temp_file.name)
                    print("Temporary file cleaned up")  # Debug print
                except Exception as e:
                    print(f"Error cleaning up temporary file: {e}")
    except Exception as e:
        print(f"Error during file processing: {str(e)}")  # Debug print
        raise HTTPException(
            status_code=500,
            detail=f"Error processing file: {str(e)}"
        )

@app.post("/query", response_model=Answer)
async def query(question: Question):
    print(f"Received query: {question.query}")  # Debug print
    print(f"QA Pipeline exists: {app_state.has_pipeline()}")  # Debug print
    
    if not app_state.has_pipeline():
        print("No QA pipeline available")  # Debug print
        raise HTTPException(
            status_code=400, 
            detail="Please upload a document first"
        )
    
    try:
        print("Starting query pipeline...")  # Debug print
        result = await app_state.qa_pipeline.arun_pipeline(question.query)
        print(f"Generated result: {result}")  # Debug print
        return result
    except Exception as e:
        print(f"Error in query endpoint: {str(e)}")  # Debug print
        raise HTTPException(
            status_code=500,
            detail=f"Error processing query: {str(e)}"
        )

@app.get("/status")
async def get_status():
    return {
        "ready": app_state.has_pipeline(),
        "message": "Document loaded and ready for queries" if app_state.has_pipeline() else "No document loaded"
    }

if __name__ == "__main__":
    uvicorn.run(
        "api:app",
        host="0.0.0.0",
        port=8000,
        reload=True,  # Enable auto-reload
        reload_dirs=["./"]  # Watch current directory for changes
    )