Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from PIL import Image | |
#from donut import DonutModel | |
def demo_process(input_img): | |
global pretrained_model, task_prompt, task_name | |
# input_img = Image.fromarray(input_img) | |
output = pretrained_model.inference(image=input_img, prompt=task_prompt)["predictions"][0] | |
return output | |
task_prompt = f"<s_cord-v2>" | |
image = Image.open("/content/SKMBT_75122072616550_Page_37_Image_0001.png") | |
image.save("cord_sample_receipt1.png") | |
image = Image.open("/content/SKMBT_75122072616550_Page_50_Image_0001.png") | |
image.save("cord_sample_receipt2.png") | |
#pretrained_model = DonutModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2") | |
#pretrained_model.encoder.to(torch.bfloat16) | |
model = torch.load("/content/drive/MyDrive/fast_job/DONUT_model/donut/model.pt") | |
# Move model to GPU | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
demo = gr.Interface( | |
fn=demo_process, | |
inputs= gr.inputs.Image(type="pil"), | |
outputs="json", | |
title=f"Donut π© demonstration for `Medical Prescription Dataset` task", | |
description="""This model is trained with 200 medical prescription handwritten document images. <br>""", | |
examples=[["cord_sample_receipt1.png"], ["cord_sample_receipt2.png"]], | |
cache_examples=False, | |
) | |
demo.launch() |