Spaces:
Sleeping
Sleeping
Delete utils.py
Browse files
utils.py
DELETED
|
@@ -1,162 +0,0 @@
|
|
| 1 |
-
|
| 2 |
-
import numpy as np
|
| 3 |
-
import pandas as pd
|
| 4 |
-
# -----------------Numerical Statistics-----------------
|
| 5 |
-
def format_values(key, value):
|
| 6 |
-
|
| 7 |
-
if not isinstance(value, (int, float)):
|
| 8 |
-
# if value is a time
|
| 9 |
-
return str(value)
|
| 10 |
-
|
| 11 |
-
if "Memory" in key:
|
| 12 |
-
# for memory usage
|
| 13 |
-
ind = 0
|
| 14 |
-
unit = dict(enumerate(["B", "KB", "MB", "GB", "TB"], 0))
|
| 15 |
-
while value > 1024:
|
| 16 |
-
value /= 1024
|
| 17 |
-
ind += 1
|
| 18 |
-
return f"{value:.1f} {unit[ind]}"
|
| 19 |
-
|
| 20 |
-
if (value * 10) % 10 == 0:
|
| 21 |
-
# if value is int but in a float form with 0 at last digit
|
| 22 |
-
value = int(value)
|
| 23 |
-
if abs(value) >= 1000000:
|
| 24 |
-
return f"{value:.5g}"
|
| 25 |
-
elif abs(value) >= 1000000 or abs(value) < 0.001:
|
| 26 |
-
value = f"{value:.5g}"
|
| 27 |
-
elif abs(value) >= 1:
|
| 28 |
-
# eliminate trailing zeros
|
| 29 |
-
pre_value = float(f"{value:.4f}")
|
| 30 |
-
value = int(pre_value) if (pre_value * 10) % 10 == 0 else pre_value
|
| 31 |
-
elif 0.001 <= abs(value) < 1:
|
| 32 |
-
value = f"{value:.4g}"
|
| 33 |
-
else:
|
| 34 |
-
value = str(value)
|
| 35 |
-
|
| 36 |
-
if "%" in key:
|
| 37 |
-
# for percentage, only use digits before notation sign for extreme small number
|
| 38 |
-
value = f"{float(value):.1%}"
|
| 39 |
-
return str(value)
|
| 40 |
-
|
| 41 |
-
def format_num_stats(data):
|
| 42 |
-
"""
|
| 43 |
-
Format numerical statistics
|
| 44 |
-
"""
|
| 45 |
-
overview = {
|
| 46 |
-
"Approximate Distinct Count": data["nuniq"],
|
| 47 |
-
"Approximate Unique (%)": data["nuniq"] / data["npres"],
|
| 48 |
-
"Missing": data["nrows"] - data["npres"],
|
| 49 |
-
"Missing (%)": 1 - (data["npres"] / data["nrows"]),
|
| 50 |
-
"Infinite": (data["npres"] - data["nreals"]),
|
| 51 |
-
"Infinite (%)": (data["npres"] - data["nreals"]) / data["nrows"],
|
| 52 |
-
"Memory Size": data["mem_use"],
|
| 53 |
-
"Mean": data["mean"],
|
| 54 |
-
"Minimum": data["min"],
|
| 55 |
-
"Maximum": data["max"],
|
| 56 |
-
"Zeros": data["nzero"],
|
| 57 |
-
"Zeros (%)": data["nzero"] / data["nrows"],
|
| 58 |
-
"Negatives": data["nneg"],
|
| 59 |
-
"Negatives (%)": data["nneg"] / data["nrows"],
|
| 60 |
-
}
|
| 61 |
-
data["qntls"].index = np.round(data["qntls"].index, 2)
|
| 62 |
-
quantile = {
|
| 63 |
-
"Minimum": data["min"],
|
| 64 |
-
"5-th Percentile": data["qntls"].loc[0.05],
|
| 65 |
-
"Q1": data["qntls"].loc[0.25],
|
| 66 |
-
"Median": data["qntls"].loc[0.50],
|
| 67 |
-
"Q3": data["qntls"].loc[0.75],
|
| 68 |
-
"95-th Percentile": data["qntls"].loc[0.95],
|
| 69 |
-
"Maximum": data["max"],
|
| 70 |
-
"Range": data["max"] - data["min"],
|
| 71 |
-
"IQR": data["qntls"].loc[0.75] - data["qntls"].loc[0.25],
|
| 72 |
-
}
|
| 73 |
-
descriptive = {
|
| 74 |
-
"Mean": data["mean"],
|
| 75 |
-
"Standard Deviation": data["std"],
|
| 76 |
-
"Variance": data["std"] ** 2,
|
| 77 |
-
"Sum": data["mean"] * data["npres"],
|
| 78 |
-
"Skewness": float(data["skew"]),
|
| 79 |
-
"Kurtosis": float(data["kurt"]),
|
| 80 |
-
"Coefficient of Variation": data["std"] / data["mean"] if data["mean"] != 0 else np.nan,
|
| 81 |
-
}
|
| 82 |
-
|
| 83 |
-
# return {
|
| 84 |
-
# "Overview": {k: _format_values(k, v) for k, v in overview.items()},
|
| 85 |
-
# # "Quantile Statistics": {k: _format_values(k, v) for k, v in quantile.items()},
|
| 86 |
-
# # "Descriptive Statistics": {k: _format_values(k, v) for k, v in descriptive.items()},
|
| 87 |
-
# }
|
| 88 |
-
|
| 89 |
-
return {
|
| 90 |
-
"Overview": {**{k: format_values(k, v) for k, v in overview.items()},
|
| 91 |
-
**{k: format_values(k, v) for k, v in quantile.items()},
|
| 92 |
-
**{k: format_values(k, v) for k, v in descriptive.items()}}
|
| 93 |
-
}
|
| 94 |
-
# -----------------------------------------------------
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
# -----------------Categorical Statistics-----------------
|
| 98 |
-
|
| 99 |
-
def format_cat_stats(
|
| 100 |
-
data
|
| 101 |
-
):
|
| 102 |
-
"""
|
| 103 |
-
Format categorical statistics
|
| 104 |
-
"""
|
| 105 |
-
stats = data['stats']
|
| 106 |
-
len_stats = data['len_stats']
|
| 107 |
-
letter_stats = data["letter_stats"]
|
| 108 |
-
ov_stats = {
|
| 109 |
-
"Approximate Distinct Count": stats["nuniq"],
|
| 110 |
-
"Approximate Unique (%)": stats["nuniq"] / stats["npres"],
|
| 111 |
-
"Missing": stats["nrows"] - stats["npres"],
|
| 112 |
-
"Missing (%)": 1 - stats["npres"] / stats["nrows"],
|
| 113 |
-
"Memory Size": stats["mem_use"],
|
| 114 |
-
}
|
| 115 |
-
sampled_rows = ("1st row", "2nd row", "3rd row", "4th row", "5th row")
|
| 116 |
-
smpl = dict(zip(sampled_rows, stats["first_rows"]))
|
| 117 |
-
|
| 118 |
-
# return {
|
| 119 |
-
# "Overview": {k: _format_values(k, v) for k, v in ov_stats.items()},
|
| 120 |
-
# "Length": {k: _format_values(k, v) for k, v in len_stats.items()},
|
| 121 |
-
# "Sample": {k: f"{v[:18]}..." if len(v) > 18 else v for k, v in smpl.items()},
|
| 122 |
-
# "Letter": {k: _format_values(k, v) for k, v in letter_stats.items()},
|
| 123 |
-
# }
|
| 124 |
-
return {
|
| 125 |
-
"Overview": {**{k: format_values(k, v) for k, v in ov_stats.items()},
|
| 126 |
-
**{k: format_values(k, v) for k, v in len_stats.items()},
|
| 127 |
-
}
|
| 128 |
-
}
|
| 129 |
-
# -----------------------------------------------------
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
def format_ov_stats(stats) :
|
| 133 |
-
|
| 134 |
-
nrows, ncols, npresent_cells, nrows_wo_dups, mem_use, dtypes_cnt = stats.values()
|
| 135 |
-
ncells = nrows * ncols
|
| 136 |
-
|
| 137 |
-
data = {
|
| 138 |
-
"Number of Variables": ncols,
|
| 139 |
-
"Number of Rows": nrows,
|
| 140 |
-
"Missing Cells": float(ncells - npresent_cells),
|
| 141 |
-
"Missing Cells (%)": 1 - (npresent_cells / ncells),
|
| 142 |
-
"Duplicate Rows": nrows - nrows_wo_dups,
|
| 143 |
-
"Duplicate Rows (%)": 1 - (nrows_wo_dups / nrows),
|
| 144 |
-
"Total Size in Memory": float(mem_use),
|
| 145 |
-
"Average Row Size in Memory": mem_use / nrows,
|
| 146 |
-
}
|
| 147 |
-
return {k: format_values(k, v) for k, v in data.items()}, dtypes_cnt
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
def format_insights(data):
|
| 151 |
-
data_list = []
|
| 152 |
-
for key, value_list in data.items():
|
| 153 |
-
for item in value_list:
|
| 154 |
-
for category, description in item.items():
|
| 155 |
-
data_list.append({'Category': category, 'Description': description})
|
| 156 |
-
|
| 157 |
-
insights_df = pd.DataFrame(data_list)
|
| 158 |
-
|
| 159 |
-
insights_df['Description'] = insights_df['Description'].str.replace(r'/\*start\*/', '', regex=True)
|
| 160 |
-
insights_df['Description'] = insights_df['Description'].str.replace(r'/\*end\*/', '', regex=True)
|
| 161 |
-
|
| 162 |
-
return insights_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|