Spaces:
Running
on
Zero
Running
on
Zero
Mustehson
commited on
Commit
·
c27c631
1
Parent(s):
c0e9411
Using Transformers
Browse files- app.py +57 -49
- requirements.txt +3 -1
app.py
CHANGED
@@ -1,53 +1,43 @@
|
|
1 |
import os
|
|
|
2 |
import duckdb
|
3 |
import spaces
|
4 |
import gradio as gr
|
5 |
import pandas as pd
|
6 |
-
from
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
# Height of the Tabs Text Area
|
11 |
TAB_LINES = 8
|
12 |
# Load Token
|
13 |
md_token = os.getenv('MD_TOKEN')
|
|
|
|
|
14 |
# Connect to DB
|
15 |
conn = duckdb.connect(f"md:my_db?motherduck_token={md_token}")
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
margin: 20px auto;
|
25 |
-
display: block;
|
26 |
-
}
|
27 |
-
.gr-button {
|
28 |
-
background-color: #4a90e2 !important;
|
29 |
-
}
|
30 |
-
.gr-button:hover {
|
31 |
-
background-color: #3a7bc8 !important;
|
32 |
-
}
|
33 |
-
"""
|
34 |
print('Loading Model...')
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
)
|
47 |
-
# return llama
|
48 |
-
|
49 |
-
# llama = load_model()
|
50 |
print('Model Loaded...')
|
|
|
51 |
|
52 |
# Get Databases
|
53 |
def get_databases():
|
@@ -76,7 +66,7 @@ def get_schema(table):
|
|
76 |
def get_prompt(schema, query_input):
|
77 |
text = f"""
|
78 |
### Instruction:
|
79 |
-
Your task is to generate valid duckdb SQL to answer the following question.
|
80 |
### Input:
|
81 |
Here is the database schema that the SQL query will run on:
|
82 |
{schema}
|
@@ -88,12 +78,7 @@ def get_prompt(schema, query_input):
|
|
88 |
return text
|
89 |
|
90 |
# Generate SQL
|
91 |
-
|
92 |
-
def generate_sql(prompt):
|
93 |
-
|
94 |
-
result = llama(prompt, temperature=0.1, max_tokens=1000)
|
95 |
-
return result["choices"][0]["text"]
|
96 |
-
|
97 |
def text2sql(table, query_input):
|
98 |
if table is None:
|
99 |
return {
|
@@ -102,11 +87,18 @@ def text2sql(table, query_input):
|
|
102 |
generated_query: "",
|
103 |
result_output:pd.DataFrame([{"error": f"❌ Unable to get the SQL query based on the text. {e}"}])
|
104 |
}
|
|
|
105 |
schema = get_schema(table)
|
|
|
106 |
prompt = get_prompt(schema, query_input)
|
107 |
-
|
108 |
try:
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
110 |
except Exception as e:
|
111 |
return {
|
112 |
table_schema: schema,
|
@@ -116,7 +108,6 @@ def text2sql(table, query_input):
|
|
116 |
}
|
117 |
try:
|
118 |
query_result = conn.sql(result).df()
|
119 |
-
conn.close()
|
120 |
|
121 |
except Exception as e:
|
122 |
return {
|
@@ -126,7 +117,6 @@ def text2sql(table, query_input):
|
|
126 |
result_output:pd.DataFrame([{"error": f"❌ Unable to get the SQL query based on the text. {e}"}])
|
127 |
}
|
128 |
|
129 |
-
conn.close()
|
130 |
return {
|
131 |
table_schema: schema,
|
132 |
input_prompt: prompt,
|
@@ -137,6 +127,24 @@ def text2sql(table, query_input):
|
|
137 |
# Load Databases Names
|
138 |
databases = get_databases()
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo"), css=custom_css) as demo:
|
141 |
gr.Image("logo.png", label=None, show_label=False, container=False, height=100)
|
142 |
|
@@ -168,8 +176,8 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo"
|
|
168 |
with gr.Tab("Schema"):
|
169 |
table_schema = gr.Textbox(lines=TAB_LINES, label="Schema", value="", interactive=False)
|
170 |
|
171 |
-
|
172 |
-
|
173 |
|
174 |
if __name__ == "__main__":
|
175 |
demo.launch()
|
|
|
1 |
import os
|
2 |
+
import torch
|
3 |
import duckdb
|
4 |
import spaces
|
5 |
import gradio as gr
|
6 |
import pandas as pd
|
7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
# Height of the Tabs Text Area
|
12 |
TAB_LINES = 8
|
13 |
# Load Token
|
14 |
md_token = os.getenv('MD_TOKEN')
|
15 |
+
|
16 |
+
print('Connecting to DB...')
|
17 |
# Connect to DB
|
18 |
conn = duckdb.connect(f"md:my_db?motherduck_token={md_token}")
|
19 |
|
20 |
+
if torch.cuda.is_available():
|
21 |
+
device = torch.device("cuda")
|
22 |
+
print(f"Using GPU: {torch.cuda.get_device_name(device)}")
|
23 |
+
else:
|
24 |
+
device = torch.device("cpu")
|
25 |
+
print("Using CPU")
|
26 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
print('Loading Model...')
|
28 |
+
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1")
|
30 |
+
|
31 |
+
quantization_config = BitsAndBytesConfig(
|
32 |
+
load_in_4bit=True,
|
33 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
34 |
+
bnb_4bit_use_double_quant=True,
|
35 |
+
bnb_4bit_quant_type= "nf4")
|
36 |
+
|
37 |
+
model = AutoModelForCausalLM.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1", quantization_config=quantization_config,
|
38 |
+
device_map="auto", torch_dtype=torch.bfloat16)
|
|
|
|
|
|
|
|
|
39 |
print('Model Loaded...')
|
40 |
+
print(f'Model Device: {model.device}')
|
41 |
|
42 |
# Get Databases
|
43 |
def get_databases():
|
|
|
66 |
def get_prompt(schema, query_input):
|
67 |
text = f"""
|
68 |
### Instruction:
|
69 |
+
Your task is to generate valid duckdb SQL query to answer the following question.
|
70 |
### Input:
|
71 |
Here is the database schema that the SQL query will run on:
|
72 |
{schema}
|
|
|
78 |
return text
|
79 |
|
80 |
# Generate SQL
|
81 |
+
@spaces.GPU
|
|
|
|
|
|
|
|
|
|
|
82 |
def text2sql(table, query_input):
|
83 |
if table is None:
|
84 |
return {
|
|
|
87 |
generated_query: "",
|
88 |
result_output:pd.DataFrame([{"error": f"❌ Unable to get the SQL query based on the text. {e}"}])
|
89 |
}
|
90 |
+
|
91 |
schema = get_schema(table)
|
92 |
+
print(f'Schema Generated...')
|
93 |
prompt = get_prompt(schema, query_input)
|
94 |
+
print(f'Prompt Generated...')
|
95 |
try:
|
96 |
+
print(f'Generating SQL... {model.device}')
|
97 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
98 |
+
input_token_len = input_ids.shape[1]
|
99 |
+
outputs = model.generate(input_ids.to(model.device), max_new_tokens=1024)
|
100 |
+
result = tokenizer.decode(outputs[0][input_token_len:], skip_special_tokens=True)
|
101 |
+
print('SQL Generated...')
|
102 |
except Exception as e:
|
103 |
return {
|
104 |
table_schema: schema,
|
|
|
108 |
}
|
109 |
try:
|
110 |
query_result = conn.sql(result).df()
|
|
|
111 |
|
112 |
except Exception as e:
|
113 |
return {
|
|
|
117 |
result_output:pd.DataFrame([{"error": f"❌ Unable to get the SQL query based on the text. {e}"}])
|
118 |
}
|
119 |
|
|
|
120 |
return {
|
121 |
table_schema: schema,
|
122 |
input_prompt: prompt,
|
|
|
127 |
# Load Databases Names
|
128 |
databases = get_databases()
|
129 |
|
130 |
+
# Custom CSS styling
|
131 |
+
custom_css = """
|
132 |
+
.gradio-container {
|
133 |
+
background-color: #f0f4f8;
|
134 |
+
}
|
135 |
+
.logo {
|
136 |
+
max-width: 200px;
|
137 |
+
margin: 20px auto;
|
138 |
+
display: block;
|
139 |
+
}
|
140 |
+
.gr-button {
|
141 |
+
background-color: #4a90e2 !important;
|
142 |
+
}
|
143 |
+
.gr-button:hover {
|
144 |
+
background-color: #3a7bc8 !important;
|
145 |
+
}
|
146 |
+
"""
|
147 |
+
|
148 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo"), css=custom_css) as demo:
|
149 |
gr.Image("logo.png", label=None, show_label=False, container=False, height=100)
|
150 |
|
|
|
176 |
with gr.Tab("Schema"):
|
177 |
table_schema = gr.Textbox(lines=TAB_LINES, label="Schema", value="", interactive=False)
|
178 |
|
179 |
+
database_dropdown.change(update_tables, inputs=database_dropdown, outputs=tables_dropdown)
|
180 |
+
generate_query_button.click(text2sql, inputs=[tables_dropdown, query_input], outputs=[table_schema, input_prompt, generated_query, result_output])
|
181 |
|
182 |
if __name__ == "__main__":
|
183 |
demo.launch()
|
requirements.txt
CHANGED
@@ -5,5 +5,7 @@ huggingface_hub
|
|
5 |
python-dotenv
|
6 |
scikit-build-core
|
7 |
duckdb
|
8 |
-
https://github.com/abetlen/llama-cpp-python/releases/download/v0.2.82-cu124/llama_cpp_python-0.2.82-cp310-cp310-linux_x86_64.whl
|
9 |
gradio
|
|
|
|
|
|
|
|
5 |
python-dotenv
|
6 |
scikit-build-core
|
7 |
duckdb
|
|
|
8 |
gradio
|
9 |
+
transformers
|
10 |
+
bitsandbytes
|
11 |
+
torch
|